Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -2,20 +2,77 @@

import java.util.Objects;

/**
* A solver for linear Diophantine equations of the form ax + by = c.
* <p>
* A linear Diophantine equation is an equation in which only integer solutions
* are allowed.
* This solver uses the Extended Euclidean Algorithm to find integer solutions
* (x, y)
* for equations of the form ax + by = c, where a, b, and c are integers.
* </p>
* <p>
* The equation has solutions if and only if gcd(a, b) divides c.
* If solutions exist, this solver finds one particular solution.
* </p>
*
* @see <a href="https://en.wikipedia.org/wiki/Diophantine_equation">Diophantine
* Equation</a>
* @see <a href=
* "https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm">Extended
* Euclidean Algorithm</a>
*/
public final class LinearDiophantineEquationsSolver {
private LinearDiophantineEquationsSolver() {
}

/**
* Demonstrates the solver with a sample equation: 3x + 4y = 7.
*
* @param args command line arguments (not used)
*/
public static void main(String[] args) {
// 3x + 4y = 7
final var toSolve = new Equation(3, 4, 7);
System.out.println(findAnySolution(toSolve));
}

/**
* Finds any integer solution to the linear Diophantine equation ax + by = c.
* <p>
* The method returns one of three types of solutions:
* <ul>
* <li>A specific solution (x, y) if solutions exist</li>
* <li>{@link Solution#NO_SOLUTION} if no integer solutions exist</li>
* <li>{@link Solution#INFINITE_SOLUTIONS} if the equation is 0x + 0y = 0</li>
* </ul>
* </p>
*
* @param equation the linear Diophantine equation to solve
* @return a Solution object containing the result
* @throws NullPointerException if equation is null
*/
public static Solution findAnySolution(final Equation equation) {
if (equation.a() == 0 && equation.b() == 0 && equation.c() == 0) {
return Solution.INFINITE_SOLUTIONS;
}
if (equation.a() == 0 && equation.b() == 0) {
return Solution.NO_SOLUTION;
}
if (equation.a() == 0) {
if (equation.c() % equation.b() == 0) {
return new Solution(0, equation.c() / equation.b());
} else {
return Solution.NO_SOLUTION;
}
}
if (equation.b() == 0) {
if (equation.c() % equation.a() == 0) {
return new Solution(equation.c() / equation.a(), 0);
} else {
return Solution.NO_SOLUTION;
}
}
final var stub = new GcdSolutionWrapper(0, new Solution(0, 0));
final var gcdSolution = gcd(equation.a(), equation.b(), stub);
if (equation.c() % gcdSolution.getGcd() != 0) {
Expand All @@ -29,43 +86,100 @@ public static Solution findAnySolution(final Equation equation) {
return toReturn;
}

/**
* Computes the GCD of two integers using the Extended Euclidean Algorithm.
* <p>
* This method also finds coefficients x and y such that ax + by = gcd(a, b).
* The coefficients are stored in the 'previous' wrapper object.
* </p>
*
* @param a the first integer
* @param b the second integer
* @param previous a wrapper to store the solution coefficients
* @return a GcdSolutionWrapper containing the GCD and coefficients
*/
private static GcdSolutionWrapper gcd(final int a, final int b, final GcdSolutionWrapper previous) {
if (b == 0) {
return new GcdSolutionWrapper(a, new Solution(1, 0));
}
// stub wrapper becomes the `previous` of the next recursive call
final var stubWrapper = new GcdSolutionWrapper(0, new Solution(0, 0));
final var next = /* recursive call */ gcd(b, a % b, stubWrapper);
final var next = gcd(b, a % b, stubWrapper);
previous.getSolution().setX(next.getSolution().getY());
previous.getSolution().setY(next.getSolution().getX() - (a / b) * (next.getSolution().getY()));
previous.setGcd(next.getGcd());
return new GcdSolutionWrapper(next.getGcd(), previous.getSolution());
}

/**
* Represents a solution (x, y) to a linear Diophantine equation.
* <p>
* Special instances:
* <ul>
* <li>{@link #NO_SOLUTION} - indicates no integer solutions exist</li>
* <li>{@link #INFINITE_SOLUTIONS} - indicates infinitely many solutions
* exist</li>
* </ul>
* </p>
*/
public static final class Solution {

/**
* Singleton instance representing the case where no solution exists.
*/
public static final Solution NO_SOLUTION = new Solution(Integer.MAX_VALUE, Integer.MAX_VALUE);

/**
* Singleton instance representing the case where infinite solutions exist.
*/
public static final Solution INFINITE_SOLUTIONS = new Solution(Integer.MIN_VALUE, Integer.MIN_VALUE);

private int x;
private int y;

/**
* Constructs a solution with the given x and y values.
*
* @param x the x coordinate of the solution
* @param y the y coordinate of the solution
*/
public Solution(int x, int y) {
this.x = x;
this.y = y;
}

/**
* Gets the x value of this solution.
*
* @return the x value
*/
public int getX() {
return x;
}

/**
* Gets the y value of this solution.
*
* @return the y value
*/
public int getY() {
return y;
}

/**
* Sets the x value of this solution.
*
* @param x the new x value
*/
public void setX(int x) {
this.x = x;
}

/**
* Sets the y value of this solution.
*
* @param y the new y value
*/
public void setY(int y) {
this.y = y;
}
Expand Down Expand Up @@ -95,14 +209,35 @@ public String toString() {
}
}

/**
* Represents a linear Diophantine equation of the form ax + by = c.
*
* @param a the coefficient of x
* @param b the coefficient of y
* @param c the constant term
*/
public record Equation(int a, int b, int c) {
}

/**
* A wrapper class that holds both the GCD and the solution coefficients
* from the Extended Euclidean Algorithm.
* <p>
* This class is used internally to pass results between recursive calls
* of the GCD computation.
* </p>
*/
public static final class GcdSolutionWrapper {

private int gcd;
private Solution solution;

/**
* Constructs a GcdSolutionWrapper with the given GCD and solution.
*
* @param gcd the greatest common divisor
* @param solution the solution coefficients
*/
public GcdSolutionWrapper(int gcd, Solution solution) {
this.gcd = gcd;
this.solution = solution;
Expand All @@ -120,18 +255,38 @@ public boolean equals(Object obj) {
return (this.gcd == that.gcd && Objects.equals(this.solution, that.solution));
}

/**
* Gets the GCD value.
*
* @return the GCD
*/
public int getGcd() {
return gcd;
}

/**
* Sets the GCD value.
*
* @param gcd the new GCD value
*/
public void setGcd(int gcd) {
this.gcd = gcd;
}

/**
* Gets the solution coefficients.
*
* @return the solution
*/
public Solution getSolution() {
return solution;
}

/**
* Sets the solution coefficients.
*
* @param solution the new solution
*/
public void setSolution(Solution solution) {
this.solution = solution;
}
Expand Down
Loading