Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add testcase of polynom_for_points #11811

Merged
merged 3 commits into from
Oct 7, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
42 changes: 24 additions & 18 deletions linear_algebra/src/polynom_for_points.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,30 +3,36 @@ def points_to_polynomial(coordinates: list[list[int]]) -> str:
coordinates is a two dimensional matrix: [[x, y], [x, y], ...]
number of points you want to use

>>> print(points_to_polynomial([]))
>>> points_to_polynomial([])
Traceback (most recent call last):
...
ValueError: The program cannot work out a fitting polynomial.
>>> print(points_to_polynomial([[]]))
>>> points_to_polynomial([[]])
Traceback (most recent call last):
...
ValueError: The program cannot work out a fitting polynomial.
>>> points_to_polynomial([[1, 0], [2, 0], [3, 0]])
'f(x)=x^2*0.0+x^1*-0.0+x^0*0.0'
>>> points_to_polynomial([[1, 1], [2, 1], [3, 1]])
'f(x)=x^2*0.0+x^1*-0.0+x^0*1.0'
>>> points_to_polynomial([[1, 3], [2, 3], [3, 3]])
'f(x)=x^2*0.0+x^1*-0.0+x^0*3.0'
>>> points_to_polynomial([[1, 1], [2, 2], [3, 3]])
'f(x)=x^2*0.0+x^1*1.0+x^0*0.0'
>>> points_to_polynomial([[1, 1], [2, 4], [3, 9]])
'f(x)=x^2*1.0+x^1*-0.0+x^0*0.0'
>>> points_to_polynomial([[1, 3], [2, 6], [3, 11]])
'f(x)=x^2*1.0+x^1*-0.0+x^0*2.0'
>>> points_to_polynomial([[1, -3], [2, -6], [3, -11]])
'f(x)=x^2*-1.0+x^1*-0.0+x^0*-2.0'
>>> points_to_polynomial([[1, 5], [2, 2], [3, 9]])
'f(x)=x^2*5.0+x^1*-18.0+x^0*18.0'
>>> points_to_polynomial([[1, 1], [1, 2], [1, 3]])
'x=1'
>>> points_to_polynomial([[1, 1], [2, 2], [2, 2]])
Traceback (most recent call last):
...
ValueError: The program cannot work out a fitting polynomial.
>>> print(points_to_polynomial([[1, 0], [2, 0], [3, 0]]))
f(x)=x^2*0.0+x^1*-0.0+x^0*0.0
>>> print(points_to_polynomial([[1, 1], [2, 1], [3, 1]]))
f(x)=x^2*0.0+x^1*-0.0+x^0*1.0
>>> print(points_to_polynomial([[1, 3], [2, 3], [3, 3]]))
f(x)=x^2*0.0+x^1*-0.0+x^0*3.0
>>> print(points_to_polynomial([[1, 1], [2, 2], [3, 3]]))
f(x)=x^2*0.0+x^1*1.0+x^0*0.0
>>> print(points_to_polynomial([[1, 1], [2, 4], [3, 9]]))
f(x)=x^2*1.0+x^1*-0.0+x^0*0.0
>>> print(points_to_polynomial([[1, 3], [2, 6], [3, 11]]))
f(x)=x^2*1.0+x^1*-0.0+x^0*2.0
>>> print(points_to_polynomial([[1, -3], [2, -6], [3, -11]]))
f(x)=x^2*-1.0+x^1*-0.0+x^0*-2.0
>>> print(points_to_polynomial([[1, 5], [2, 2], [3, 9]]))
f(x)=x^2*5.0+x^1*-18.0+x^0*18.0
"""
if len(coordinates) == 0 or not all(len(pair) == 2 for pair in coordinates):
raise ValueError("The program cannot work out a fitting polynomial.")
Expand Down