-
Notifications
You must be signed in to change notification settings - Fork 1
DenseNet121_CWBCE_E20_B32
Version: 1
Trained DenseNet121 architecture using the 'CWBCE_E20_B32' benchmark. The benchmark was initialized for the chexpert_full dataset with batch size of 32, shuffel set to True and images rescaled to dimension (256, 256). The training was done for 20 epochs using the Adam optimizer and weighted_binary_crossentropy loss. A total of 14 labels/pathologies were included in the training and encoded using the 'uzeroes' method. The traing set included 141807 number of sample, the validation set 36980, and the test set 44627.
from pathlib import Path
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure
import json
import os
import re
import pprint
data = json.loads(os.environ['EXP_DATA'])
history = data['history']
for s in data["description"].split(".")[:-1]:
print(s + ".\n")
Trained DenseNet121 architecture using the 'CWBCE_E20_B32' benchmark.
The benchmark was initialized for the chexpert_full dataset with batch size of 32, shuffel set to True and images rescaled to dimension (256, 256).
The training was done for 20 epochs using the Adam optimizer and weighted_binary_crossentropy loss.
A total of 14 labels/pathologies were included in the training and encoded using the 'uzeroes' method.
The traing set included 141807 number of sample, the validation set 36980, and the test set 44627.
# if there are any metrics that were renamed, add this new name here as ("default_name":"new_name")
metric_custom_names={"auc":"AUC_ROC"}
metric_names = [re.sub("([a-z0-9])([A-Z])","\g<1> \g<2>",name) for name in data["benchmark"]["metrics"]]
metric_keys = [re.sub("([a-z0-9])([A-Z])","\g<1>_\g<2>",name).lower() for name in data["benchmark"]["metrics"]]
for default_name, custom_name in metric_custom_names.items():
if not default_name in history.keys() and default_name in metric_keys:
#replace default name with custom name
metric_keys[metric_keys.index(default_name)]=custom_name
def print_or_plot_metric(metric_key, metric_name, figure_name):
if len(history[metric_key]) == 1:
print("Data for {m_name} only available for a single epoch. \nSkipping plot and printing data...".format(m_name=metric_name))
print('Train {}: '.format(metric_name), history[metric_key])
print('Validation {}: '.format(metric_name), history['val_'+metric_key])
print()
else:
plot_epoch_metric(metric_key, metric_name, figure_name)
def plot_epoch_metric(metric_key, metric_name, figure_name):
figure(num=None, figsize=(10, 6))
plt.plot(history[metric_key])
if 'val_'+metric_key in history.keys():
plt.plot(history['val_'+metric_key])
plt.title(figure_name)
plt.ylabel(metric_name)
plt.xlabel('Epoch')
if 'val_'+metric_key in history.keys():
plt.legend(['Train', 'Validation'], loc='upper left')
plt.show()
for i, metric_key in enumerate(metric_keys):
print_or_plot_metric(metric_key, metric_names[i], "Model "+metric_names[i])
print_or_plot_metric("loss", "Loss", "Model loss")
if "lr" in history.keys():
plot_epoch_metric("lr", "Learning Rate", "Learning Rate")
if 'classification_report' in data.keys() and data['classification_report']:
print(data['classification_report'])
precision recall f1-score support
No Finding 0.10 0.27 0.14 4330
Enlarged Cardiomediastinum 0.05 0.30 0.08 2113
Cardiomegaly 0.12 0.25 0.16 5240
Lung Opacity 0.47 0.55 0.51 21148
Lung Lesion 0.04 0.22 0.07 1917
Edema 0.23 0.37 0.28 10309
Consolidation 0.07 0.44 0.12 3019
Pneumonia 0.03 0.21 0.05 1198
Atelectasis 0.15 0.47 0.22 6573
Pneumothorax 0.08 0.23 0.12 3889
Pleural Effusion 0.39 0.46 0.42 17361
Pleural Other 0.02 0.11 0.03 705
Fracture 0.04 0.21 0.07 1850
Support Devices 0.51 0.55 0.53 23041
micro avg 0.22 0.44 0.29 102693
macro avg 0.16 0.33 0.20 102693
weighted avg 0.33 0.44 0.37 102693
samples avg 0.21 0.41 0.26 102693
if 'test' in data.keys() and data['test']:
for score_name, score in data["test"].items():
print('Test {}: '.format(score_name), score)
Test loss: 1.3472518920898438
Test auc: 0.7710159420967102
Test precision: 0.3716121017932892
Test recall: 0.7464773654937744
Test f2_score: 0.6211581230163574
Test binary_accuracy: 0.7508498430252075
pp = pprint.PrettyPrinter(indent=4)
if "benchmark" in data.keys():
pp.pprint(data["benchmark"])
{ 'batch_size': 32,
'benchmark_name': 'CWBCE_E20_B32',
'dataset_folder': 'data/chexpert/full',
'dataset_name': 'chexpert_full',
'dim': [256, 256],
'drop_last': True,
'epochs': 20,
'label_columns': [ 'No Finding',
'Enlarged Cardiomediastinum',
'Cardiomegaly',
'Lung Opacity',
'Lung Lesion',
'Edema',
'Consolidation',
'Pneumonia',
'Atelectasis',
'Pneumothorax',
'Pleural Effusion',
'Pleural Other',
'Fracture',
'Support Devices'],
'loss': 'weighted_binary_crossentropy',
'metrics': ['auc', 'precision', 'recall', 'f2_score', 'binary_accuracy'],
'models_dir': 'models',
'n_channels': 3,
'nan_replacement': 0,
'optimizer': 'Adam',
'path_column': 'Path',
'path_column_prefix': '',
'shuffle': True,
'test_num_samples': 44627,
'train_num_samples': 141807,
'u_enc': 'uzeroes',
'unc_value': -1,
'valid_num_samples': 36980}
Version: 1
Trained DenseNet121 architecture using the 'CWBCE_E20_B32' benchmark. The benchmark was initialized for the chexpert_full dataset with batch size of 32, shuffel set to True and images rescaled to dimension (256, 256). The training was done for 20 epochs using the Adam optimizer and weighted_binary_crossentropy loss. A total of 14 labels/pathologies were included in the training and encoded using the 'uzeroes' method. The traing set included 141807 number of sample, the validation set 36980, and the test set 44627.
from pathlib import Path
from dotenv import load_dotenv, find_dotenv
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure
import json
import os
import re
import pprint
basepath = Path(os.getcwd())
if basepath.name != "idp-radio-1":
os.chdir(basepath.parent.parent)
print(os.getcwd())
load_dotenv(find_dotenv())
from src.preprocessing.split.train_test_split import train_test_split
/srv/idp-radio-1
data = json.loads(os.environ['EXP_DATA'])
history = data['history']
for s in data["description"].split(".")[:-1]:
print(s + ".\n")
Trained DenseNet121 architecture using the 'CWBCE_E20_B32' benchmark.
The benchmark was initialized for the chexpert_full dataset with batch size of 32, shuffel set to True and images rescaled to dimension (256, 256).
The training was done for 20 epochs using the Adam optimizer and weighted_binary_crossentropy loss.
A total of 14 labels/pathologies were included in the training and encoded using the 'uzeroes' method.
The traing set included 141807 number of sample, the validation set 36980, and the test set 44627.
# if there are any metrics that were renamed, add this new name here as ("default_name":"new_name")
metric_custom_names={"auc":"AUC_ROC"}
metric_names = [re.sub("([a-z0-9])([A-Z])","\g<1> \g<2>",name) for name in data["benchmark"]["metrics"]]
metric_keys = [re.sub("([a-z0-9])([A-Z])","\g<1>_\g<2>",name).lower() for name in data["benchmark"]["metrics"]]
for default_name, custom_name in metric_custom_names.items():
if not default_name in history.keys() and default_name in metric_keys:
#replace default name with custom name
metric_keys[metric_keys.index(default_name)]=custom_name
def print_or_plot_metric(metric_key, metric_name, figure_name):
if len(history[metric_key]) == 1:
print("Data for {m_name} only available for a single epoch. \nSkipping plot and printing data...".format(m_name=metric_name))
print('Train {}: '.format(metric_name), history[metric_key])
print('Validation {}: '.format(metric_name), history['val_'+metric_key])
print()
else:
plot_epoch_metric(metric_key, metric_name, figure_name)
def plot_epoch_metric(metric_key, metric_name, figure_name):
figure(num=None, figsize=(10, 6))
plt.plot(history[metric_key])
if 'val_'+metric_key in history.keys():
plt.plot(history['val_'+metric_key])
plt.title(figure_name)
plt.ylabel(metric_name)
plt.xlabel('Epoch')
if 'val_'+metric_key in history.keys():
plt.legend(['Train', 'Validation'], loc='upper left')
plt.show()
for i, metric_key in enumerate(metric_keys):
print_or_plot_metric(metric_key, metric_names[i], "Model "+metric_names[i])
print_or_plot_metric("loss", "Loss", "Model loss")
if "lr" in history.keys():
plot_epoch_metric("lr", "Learning Rate", "Learning Rate")
if 'classification_report' in data.keys() and data['classification_report']:
print(data['classification_report'])
precision recall f1-score support
No Finding 0.10 0.27 0.14 4330
Enlarged Cardiomediastinum 0.05 0.30 0.08 2113
Cardiomegaly 0.12 0.25 0.16 5240
Lung Opacity 0.47 0.55 0.51 21148
Lung Lesion 0.04 0.22 0.07 1917
Edema 0.23 0.37 0.28 10309
Consolidation 0.07 0.44 0.12 3019
Pneumonia 0.03 0.21 0.05 1198
Atelectasis 0.15 0.47 0.22 6573
Pneumothorax 0.08 0.23 0.12 3889
Pleural Effusion 0.39 0.46 0.42 17361
Pleural Other 0.02 0.11 0.03 705
Fracture 0.04 0.21 0.07 1850
Support Devices 0.51 0.55 0.53 23041
micro avg 0.22 0.44 0.29 102693
macro avg 0.16 0.33 0.20 102693
weighted avg 0.33 0.44 0.37 102693
samples avg 0.21 0.41 0.26 102693
if 'test' in data.keys() and data['test']:
for score_name, score in data["test"].items():
print('Test {}: '.format(score_name), score)
Test loss: 1.3472518920898438
Test auc: 0.7710159420967102
Test precision: 0.3716121017932892
Test recall: 0.7464773654937744
Test f2_score: 0.6211581230163574
Test binary_accuracy: 0.7508498430252075
pp = pprint.PrettyPrinter(indent=4)
if "benchmark" in data.keys():
pp.pprint(data["benchmark"])
{ 'batch_size': 32,
'benchmark_name': 'CWBCE_E20_B32',
'dataset_folder': 'data/chexpert/full',
'dataset_name': 'chexpert_full',
'dim': [256, 256],
'drop_last': True,
'epochs': 20,
'label_columns': [ 'No Finding',
'Enlarged Cardiomediastinum',
'Cardiomegaly',
'Lung Opacity',
'Lung Lesion',
'Edema',
'Consolidation',
'Pneumonia',
'Atelectasis',
'Pneumothorax',
'Pleural Effusion',
'Pleural Other',
'Fracture',
'Support Devices'],
'loss': 'weighted_binary_crossentropy',
'metrics': ['auc', 'precision', 'recall', 'f2_score', 'binary_accuracy'],
'models_dir': 'models',
'n_channels': 3,
'nan_replacement': 0,
'optimizer': 'Adam',
'path_column': 'Path',
'path_column_prefix': '',
'shuffle': True,
'test_num_samples': 44627,
'train_num_samples': 141807,
'u_enc': 'uzeroes',
'unc_value': -1,
'valid_num_samples': 36980}
if 'benchmark' in data.keys() and 'split_seed' in data['benchmark']:
benchmark = data['benchmark']
dataset_path = Path(benchmark['dataset_folder'])
train_labels = benchmark['train_labels'] if 'train_labels' in benchmark.keys() else 'train.csv'
split_test_size = benchmark['split_test_size'] if 'split_test_size' in benchmark.keys() else 0.2
split_valid_size = benchmark['split_valid_size'] if 'split_valid_size' in benchmark.keys() else 0.2
split_group = benchmark['split_group'] if 'split_group' in benchmark.keys() else 'patient_id'
split_seed = benchmark['split_seed']
all_labels = pd.read_csv(dataset_path / train_labels)
train_labels, test_labels = train_test_split(all_labels, test_size=split_test_size, group=split_group, seed=split_seed)
train_labels, validation_labels = train_test_split(train_labels, test_size=split_valid_size, group=split_group, seed=split_seed)
from src.datasets.u_encoding import uencode
def get_distribution(labels):
if 'nan_replacement' in benchmark.keys():
labels = labels.fillna(benchmark['nan_replacement'])
data = labels.to_numpy()
data = uencode(benchmark['u_enc'], data, unc_value=benchmark['unc_value'])
data = pd.DataFrame(data, columns=labels.columns)
labels = data[benchmark['label_columns']]
d = {'Pathology': [], 'Positive': [], 'Positive %': [], 'Negative': [], 'Negative %': [],}
for label in labels.columns:
values = labels.groupby(label)
d['Pathology'].append(label)
positive = values.size()[1.0] if 1.0 in values.size() else 0
positive_percent = positive / labels.shape[0] * 100
d['Positive'].append(positive)
d['Positive %'].append(round(positive_percent))
negative = values.size()[-0.0] if -0.0 in values.size() else 0
negative_percent = negative / labels.shape[0] * 100
d['Negative'].append(negative)
d['Negative %'].append(round(negative_percent))
df = pd.DataFrame(d)
df = df.set_index('Pathology')
return df
if 'benchmark' in data.keys() and 'split_seed' in data['benchmark']:
train = get_distribution(train_labels)
val = get_distribution(validation_labels)
test = get_distribution(test_labels)
positives = train[['Positive %']].merge(val[['Positive %']], left_index=True, right_index=True).merge(test[['Positive %']], left_index=True, right_index=True).rename(columns={"Positive %_x": "Positives Train", "Positive %_y": "Positives Validation", "Positive %": "Positives Test", })
positives.copy().plot(kind='bar', figsize=(10,7), title="Positive Labels Distribution")
negatives = train[['Negative %']].merge(val[['Negative %']], left_index=True, right_index=True).merge(test[['Negative %']], left_index=True, right_index=True).rename(columns={"Negative %_x": "Negative Train", "Negative %_y": "Negative Validation", "Negative %": "Negative Test", })
negatives.copy().plot(kind='bar', figsize=(10,7), title="Negative Labels Distribution")
train[['Positive %', 'Negative %']].copy().plot(kind='bar', figsize=(10,7), title="Training set")
val[['Positive %', 'Negative %']].copy().plot(kind='bar', figsize=(10,7), title="Validation set")
test[['Positive %', 'Negative %']].copy().plot(kind='bar', figsize=(10,7), title="Test set")