Skip to content

DenseNet121_Chexpert_BCE_E5_B52_C0_N5_D256_DS9505_LR4

Tobias Schmidt edited this page Oct 19, 2020 · 1 revision

DenseNet121_Chexpert_BCE_E5_B52_C0_N5_D256_DS9505_LR4

Version: 1

Trained DenseNet121 architecture using the 'Chexpert_BCE_E5_B52_C0_N5_D256_DS9505_LR4' benchmark. The benchmark was initialized for the chexpert_full dataset with batch size of 52, shuffle set to True and images rescaled to dimension (256, 256). The training was done for 5 epochs using the Adam optimizer and binary_crossentropy loss. A total of 5 labels/pathologies were included in the training and encoded using the 'uzeroes' method. The traing set included 211818 number of sample, the validation set 11596, and the test set 234.

from pathlib import Path
from dotenv import load_dotenv, find_dotenv
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure
import json
import os
import re
import pprint

basepath = Path(os.getcwd())
if basepath.name != "idp-radio-1":
    os.chdir(basepath.parent.parent)
    print(os.getcwd())
load_dotenv(find_dotenv())

from src.preprocessing.split.train_test_split import train_test_split
/srv/idp-radio-1
data = json.loads(os.environ['EXP_DATA'])
history = data['history']

Model and Benchmark Summary

for s in data["description"].split(".")[:-1]:
    print(s + ".\n")
Trained DenseNet121 architecture using the 'Chexpert_BCE_E5_B52_C0_N5_D256_DS9505_LR4' benchmark.

 The benchmark was initialized for the chexpert_full dataset with batch size of 52, shuffle set to True and images rescaled to dimension (256, 256).


The training was done for 5 epochs using the Adam optimizer and binary_crossentropy loss.


A total of 5 labels/pathologies were included in the training and encoded using the 'uzeroes' method.


The traing set included 211818 number of sample, the validation set 11596, and the test set 234.

Extract and format metrics to be plotted

# if there are any metrics that were renamed, add this new name here as ("default_name":"new_name")
metric_custom_names={"auc":"AUC_ROC"}

metric_names = [re.sub("([a-z0-9])([A-Z])","\g<1> \g<2>",name) for name in data["benchmark"]["metrics"]]
metric_keys = [re.sub("([a-z0-9])([A-Z])","\g<1>_\g<2>",name).lower() for name in data["benchmark"]["metrics"]]

for default_name, custom_name in metric_custom_names.items():
    if not default_name in history.keys() and default_name in metric_keys:
        #replace default name with custom name
        metric_keys[metric_keys.index(default_name)]=custom_name

Plot training & validation accuracy values

def print_or_plot_metric(metric_key, metric_name, figure_name):
    if len(history[metric_key]) == 1:
        print("Data for {m_name} only available for a single epoch. \nSkipping plot and printing data...".format(m_name=metric_name))
        print('Train {}: '.format(metric_name), history[metric_key])
        print('Validation {}: '.format(metric_name), history['val_'+metric_key])
        print()        
    else:
        plot_epoch_metric(metric_key, metric_name, figure_name)
        
def plot_epoch_metric(metric_key, metric_name, figure_name):
    figure(num=None, figsize=(10, 6))
    plt.plot(history[metric_key])
    if 'val_'+metric_key in history.keys():
        plt.plot(history['val_'+metric_key])
    plt.title(figure_name)
    plt.ylabel(metric_name)
    plt.xlabel('Epoch')
    if 'val_'+metric_key in history.keys():
        plt.legend(['Train', 'Validation'], loc='upper left')
    plt.show()

for i, metric_key in enumerate(metric_keys):
    print_or_plot_metric(metric_key, metric_names[i], "Model "+metric_names[i])

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

Plot training & validation loss values

print_or_plot_metric("loss", "Loss", "Model loss")

png

if "lr" in history.keys():
    plot_epoch_metric("lr", "Learning Rate", "Learning Rate")

png

Classification Report

if 'classification_report' in data.keys() and data['classification_report']:
    print(data['classification_report'])
                  precision    recall  f1-score   support

    Cardiomegaly       0.00      0.00      0.00        68
           Edema       0.18      0.13      0.15        45
   Consolidation       0.00      0.00      0.00        33
     Atelectasis       0.67      0.03      0.05        80
Pleural Effusion       0.31      0.24      0.27        67

       micro avg       0.25      0.08      0.12       293
       macro avg       0.23      0.08      0.09       293
    weighted avg       0.28      0.08      0.10       293
     samples avg       0.08      0.05      0.06       293

Test Scores

if 'test' in data.keys() and data['test']:
    for score_name, score in data["test"].items():
        print('Test {}: '.format(score_name), score)
Test loss:  0.5132223963737488
Test auc:  0.8313884735107422
Test precision:  0.7604166865348816
Test recall:  0.24914675951004028
Test f2_score:  0.2878549098968506
Test binary_accuracy:  0.7923083305358887
Test accuracy_cardiomegaly:  0.7264957427978516
Test accuracy_edema:  0.8589743375778198
Test accuracy_consolidation:  0.8632478713989258
Test accuracy_atelectasis:  0.6623931527137756
Test accuracy_pleural_effusion:  0.8504273295402527
Test auc_cardiomegaly:  0.7309088706970215
Test auc_edema:  0.9047031402587891
Test auc_consolidation:  0.8505201935768127
Test auc_atelectasis:  0.7588880658149719
Test auc_pleural_effusion:  0.9119223952293396
Test precision_cardiomegaly:  1.0
Test precision_edema:  0.6764705777168274
Test precision_consolidation:  0.6666666865348816
Test precision_atelectasis:  0.6666666865348816
Test precision_pleural_effusion:  0.807692289352417
Test recall_cardiomegaly:  0.05882352963089943
Test recall_edema:  0.5111111402511597
Test recall_consolidation:  0.06060606241226196
Test recall_atelectasis:  0.02500000037252903
Test recall_pleural_effusion:  0.6268656849861145
Test f2_score_cardiomegaly:  0.07246376574039459
Test f2_score_edema:  0.5373831987380981
Test f2_score_consolidation:  0.07407408207654953
Test f2_score_atelectasis:  0.030959751456975937
Test f2_score_pleural_effusion:  0.6562500596046448

Benchmark Details

pp = pprint.PrettyPrinter(indent=4)
if "benchmark" in data.keys():
    pp.pprint(data["benchmark"])
{   'augmentation': None,
    'batch_size': 52,
    'benchmark_name': 'Chexpert_BCE_E5_B52_C0_N5_D256_DS9505_LR4',
    'crop': False,
    'dataset_folder': 'data/chexpert/full',
    'dataset_name': 'chexpert_full',
    'dim': [256, 256],
    'drop_last': False,
    'epochs': 5,
    'label_columns': [   'Cardiomegaly',
                         'Edema',
                         'Consolidation',
                         'Atelectasis',
                         'Pleural Effusion'],
    'learning_rate': 5e-05,
    'loss': 'binary_crossentropy',
    'metrics': [   'auc',
                   'precision',
                   'recall',
                   'f2_score',
                   'binary_accuracy',
                   'accuracy_cardiomegaly',
                   'accuracy_edema',
                   'accuracy_consolidation',
                   'accuracy_atelectasis',
                   'accuracy_pleural_effusion',
                   'auc_cardiomegaly',
                   'auc_edema',
                   'auc_consolidation',
                   'auc_atelectasis',
                   'auc_pleural_effusion',
                   'precision_cardiomegaly',
                   'precision_edema',
                   'precision_consolidation',
                   'precision_atelectasis',
                   'precision_pleural_effusion',
                   'recall_cardiomegaly',
                   'recall_edema',
                   'recall_consolidation',
                   'recall_atelectasis',
                   'recall_pleural_effusion',
                   'f2_score_cardiomegaly',
                   'f2_score_edema',
                   'f2_score_consolidation',
                   'f2_score_atelectasis',
                   'f2_score_pleural_effusion'],
    'models_dir': 'models',
    'n_channels': 3,
    'nan_replacement': 0,
    'negative_weights': [   1.136679768562317,
                            1.3051981925964355,
                            1.0711511373519897,
                            1.1755650043487549,
                            1.6276289224624634],
    'num_samples_test': 234,
    'num_samples_train': 211818,
    'num_samples_validation': 11596,
    'optimizer': 'Adam',
    'path_column': 'Path',
    'path_column_prefix': '',
    'positive_weights': [   8.31637191772461,
                            4.276559829711914,
                            15.054584503173828,
                            6.695896625518799,
                            2.5932981967926025],
    'shuffle': True,
    'split_seed': 6122156,
    'u_enc': 'uzeroes',
    'unc_value': -1,
    'use_class_weights': False}

Data Distribution

if 'benchmark' in data.keys() and 'split_seed' in data['benchmark']:
    benchmark = data['benchmark']

    dataset_path = Path(benchmark['dataset_folder'])
    train_labels = benchmark['train_labels'] if 'train_labels' in benchmark.keys() else 'train.csv'
    test_labels = benchmark['test_labels'] if 'test_labels' in benchmark.keys() else None
    split_test_size =  benchmark['split_test_size'] if 'split_test_size' in benchmark.keys() else 0.1
    split_valid_size =  benchmark['split_valid_size'] if 'split_valid_size' in benchmark.keys() else 0.1
    split_group = benchmark['split_group'] if 'split_group' in benchmark.keys() else 'patient_id'
    split_seed = benchmark['split_seed']

    if test_labels is None:
        # read all labels from one file and split into train/test/valid
        all_labels = pd.read_csv(dataset_path / train_labels)
        train_labels, test_labels = train_test_split(
            all_labels, test_size=split_test_size, group=split_group, seed=split_seed)
        train_labels, validation_labels = train_test_split(
            train_labels, test_size=split_valid_size, group=split_group, seed=split_seed)
    else:
        # read train and valid labels from one file and test from another.
        train_labels = pd.read_csv(dataset_path / train_labels)
        train_labels, validation_labels = train_test_split(
            train_labels, test_size=split_valid_size, group=split_group, seed=split_seed)
        test_labels = pd.read_csv(dataset_path / test_labels)
from src.datasets.u_encoding import uencode

def get_distribution(labels):
    if 'nan_replacement' in benchmark.keys():
        labels = labels.fillna(benchmark['nan_replacement'])
    data = labels.to_numpy()
    data = uencode(benchmark['u_enc'], data, unc_value=benchmark['unc_value'])
    data = pd.DataFrame(data, columns=labels.columns)

    labels = data[benchmark['label_columns']]

    d = {'Pathology': [], 'Positive': [], 'Positive %': [], 'Negative': [], 'Negative %': [],}
    for label in labels.columns:
        values = labels.groupby(label)
        d['Pathology'].append(label)

        positive = values.size()[1.0] if 1.0 in values.size() else 0
        positive_percent = positive / labels.shape[0] * 100
        d['Positive'].append(positive)
        d['Positive %'].append(round(positive_percent))

        negative = values.size()[-0.0] if -0.0 in values.size() else 0
        negative_percent = negative / labels.shape[0] * 100
        d['Negative'].append(negative)
        d['Negative %'].append(round(negative_percent))
    
    df = pd.DataFrame(d)
    df = df.set_index('Pathology')

    return df
if 'benchmark' in data.keys() and 'split_seed' in data['benchmark']:
    train = get_distribution(train_labels)
    val = get_distribution(validation_labels)
    test = get_distribution(test_labels)
    
    positives = train[['Positive %']].merge(val[['Positive %']], left_index=True, right_index=True).merge(test[['Positive %']], left_index=True,  right_index=True).rename(columns={"Positive %_x": "Positives Train", "Positive %_y": "Positives Validation", "Positive %": "Positives Test", })
    positives.copy().plot(kind='bar', figsize=(10,7), title="Positive Labels Distribution")
    
    negatives = train[['Negative %']].merge(val[['Negative %']], left_index=True, right_index=True).merge(test[['Negative %']], left_index=True,  right_index=True).rename(columns={"Negative %_x": "Negative Train", "Negative %_y": "Negative Validation", "Negative %": "Negative Test", })
    negatives.copy().plot(kind='bar', figsize=(10,7), title="Negative Labels Distribution")

    train[['Positive %', 'Negative %']].copy().plot(kind='bar', figsize=(10,7), title="Training set")
    val[['Positive %', 'Negative %']].copy().plot(kind='bar', figsize=(10,7), title="Validation set")
    test[['Positive %', 'Negative %']].copy().plot(kind='bar', figsize=(10,7), title="Test set")

png

png

png

png

png

Clone this wiki locally