Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Support Gemma 2 #223

Merged
merged 36 commits into from
Jan 10, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
36 commits
Select commit Hold shift + click to select a range
e428bb5
dev: qnn multi input inference developing
oreomaker Nov 8, 2024
fca8584
Merge branch 'main' into develop-zh
oreomaker Nov 12, 2024
f94937d
feat: qnn multi chunk prefilling in new frontend
oreomaker Nov 13, 2024
83fefd3
Merge branch 'main' into develop-zh
yirongjie Nov 14, 2024
5ff02cd
fix: clearCache in RoPE
yirongjie Nov 14, 2024
68ddb99
fix: genarate with Padding
yirongjie Nov 14, 2024
28811fe
feat: make chunk_size configurable in demo_phonelm_npu
oreomaker Nov 14, 2024
d930d14
Merge branch 'main' into develop-zh
oreomaker Nov 16, 2024
9406c02
chore: andoid submodule diff
oreomaker Nov 16, 2024
caf4f9c
fix: qwen npu demos execution type set
oreomaker Nov 18, 2024
dfac9d5
feat: KVCacheNPU GQA
oreomaker Nov 18, 2024
2b20472
refactor: simplify kvcache npu
oreomaker Nov 21, 2024
fb95bcd
fix: kvcache npu seq
oreomaker Nov 21, 2024
865dcd6
Merge branch 'main' into develop-zh
oreomaker Nov 27, 2024
3ec8d77
chore: android diff
oreomaker Nov 27, 2024
3b0042d
dev: pipeline class init
oreomaker Dec 4, 2024
05bcd77
refactor: configurable chunk_size in qwen
oreomaker Dec 4, 2024
c3a0c4e
chore: remove qnn getBuildId
oreomaker Dec 7, 2024
9a56c4c
chore: clean qnn backend include
oreomaker Dec 7, 2024
f627381
dev: qnn new frontend pipeline(wrap implement)
oreomaker Dec 7, 2024
bec0a63
fix: kvcache nrep and stage switching bug in old frontend
oreomaker Dec 11, 2024
38fff58
feat: new frontend pipeline
oreomaker Jan 6, 2025
8d07588
chore: qnn qwen executable change
oreomaker Jan 6, 2025
693700b
feat: qnn prefill optimization, only do 1 seq lm_head
oreomaker Jan 7, 2025
be8258f
refactor: main qwen npu token post process
oreomaker Jan 7, 2025
f8def41
Merge branch 'main' into develop-zh
oreomaker Jan 7, 2025
7e20e8b
fix: qnn old frontend modeling backend assign
oreomaker Jan 7, 2025
1d526c1
fix: qnn total length and cur length conflict
oreomaker Jan 7, 2025
6070a4a
feat: configurable chunk size for HeadLinear
oreomaker Jan 7, 2025
a459c74
Update CMakeLists.txt
yirongjie Jan 8, 2025
0f03af2
fix:
yirongjie Jan 8, 2025
79151f2
fix
yirongjie Jan 8, 2025
c5973f1
feat: add gemma 2 model
oreomaker Jan 10, 2025
c19a0ad
chore: update gemma2 vocab
oreomaker Jan 10, 2025
2f0c3bf
Merge branch 'main' into develop-zh
yirongjie Jan 10, 2025
249ab14
doc: README
yirongjie Jan 10, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -87,6 +87,7 @@ Why on-device multimodal LLM? - It's a key building block for [intelligent perso
| [TinyLLaMA 1.1B](https://github.com/jzhang38/TinyLlama) | [✔️](https://huggingface.co/mllmTeam/tinyllama-1.1b-mllm/tree/main) | [✔️](https://huggingface.co/mllmTeam/tinyllama-1.1b-mllm/tree/main) | |
| [LLaVA 7B](https://github.com/haotian-liu/LLaVA) | [✔️](https://huggingface.co/mllmTeam/llava-1.5-7b-mllm/tree/main) | [✔️](https://huggingface.co/mllmTeam/llava-1.5-7b-mllm/tree/main) | |
| [Gemma 2B](https://github.com/google/gemma_pytorch) | [✔️](https://huggingface.co/mllmTeam/gemma-2b-mllm/tree/main) | [✔️](https://huggingface.co/mllmTeam/gemma-2b-mllm/tree/main) | |
| [Gemma 2 2B](https://github.com/google/gemma_pytorch) | [✔️](https://huggingface.co/mllmTeam/gemma-2-2b-mllm/tree/main) | [✔️](https://huggingface.co/mllmTeam/gemma-2-2b-mllm/tree/main) | |
| [Qwen 1.5 0.5B](https://github.com/QwenLM/Qwen) | [✔️](https://huggingface.co/mllmTeam/qwen-1.5-0.5b-mllm/tree/main) | [✔️](https://huggingface.co/mllmTeam/qwen-1.5-0.5b-mllm/tree/main) | |
| [Qwen 1.5 1.8B](https://github.com/QwenLM/Qwen) | [✔️](https://huggingface.co/mllmTeam/qwen-1.5-1.8b-chat-mllm) | [✔️](https://huggingface.co/mllmTeam/qwen-1.5-1.8b-chat-mllm) | [✔️](https://huggingface.co/mllmTeam/qwen-1.5-1.8b-chat-mllm) |
| [Qwen 2.5 1.5B](https://github.com/QwenLM/Qwen2.5) | [✔️](https://huggingface.co/mllmTeam/qwen-2.5-1.5b-mllm/tree/main) | [✔️](https://huggingface.co/mllmTeam/qwen-2.5-1.5b-mllm/tree/main) | |
Expand Down
1 change: 1 addition & 0 deletions examples/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -61,6 +61,7 @@ func_llm_add_executable(demo_stablelm)
func_llm_add_executable(demo_sparse_llama)
func_llm_add_executable(demo_elastic_llama)
func_llm_add_executable(demo_gemma)
func_llm_add_executable(demo_gemma2)
func_llm_add_executable(demo_qwen)
func_llm_add_executable(demo_mistral)
func_llm_add_executable(demo_yi)
Expand Down
53 changes: 53 additions & 0 deletions examples/demo_gemma2.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
#include "cmdline.h"
#include "models/gemma2/configuration_gemma2.hpp"
#include "models/gemma2/modeling_gemma2.hpp"
#include "models/gemma/tokenization_gemma.hpp"
#include "processor/PostProcess.hpp"

using namespace mllm;

int main(int argc, char **argv) {
cmdline::parser cmdParser;
cmdParser.add<string>("vocab", 'v', "specify mllm tokenizer model path", false, "../vocab/gemma2_vocab.mllm");
cmdParser.add<string>("model", 'm', "specify mllm model path", false, "../models/gemma-2-2b-q4_k.mllm");
cmdParser.add<int>("limits", 'l', "max KV cache size", false, 400);
cmdParser.add<int>("thread", 't', "num of threads", false, 4);
cmdParser.parse_check(argc, argv);

string vocab_path = cmdParser.get<string>("vocab");
string model_path = cmdParser.get<string>("model");
int tokens_limit = cmdParser.get<int>("limits");
CPUBackend::cpu_threads = cmdParser.get<int>("thread");

// gemma2 uses the same tokenizer as gemma
auto tokenizer = GemmaTokenizer(vocab_path);

Gemma2Config config(tokens_limit, "2B", RoPEType::HFHUBROPE);
auto model = Gemma2ForCausalLM(config);
model.load(model_path);

vector<string> in_strs = {
"Hello, who are you?",
"What can you do?",
"Please introduce Beijing University of Posts and Telecommunications."};

for (int i = 0; i < in_strs.size(); ++i) {
auto in_str = in_strs[i];
auto input_tensor = tokenizer.tokenize(in_str);

std::cout << "[Q] " << in_str << std::endl;
std::cout << "[A] " << std::flush;
for (int step = 0; step < 200; step++) {
auto result = model({input_tensor});
auto [out_string, out_token] = tokenizer.detokenize(result[0]);
auto [not_end, output_string] = tokenizer.postprocess(out_string);
if (!not_end) { break; }
std::cout << output_string << std::flush;
chatPostProcessing(out_token, input_tensor, {});
}
printf("\n");
model.clear_kvcache();
}

return 0;
}
79 changes: 79 additions & 0 deletions src/models/gemma2/configuration_gemma2.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
#ifndef CONFIG_GEMMA2_HPP
#define CONFIG_GEMMA2_HPP
#include "Types.hpp"
#include "models/transformer/configuration_transformer.hpp"

using namespace mllm;

class Gemma2NameConfig : public TransformerNameConfig {
public:
/**
* @brief Gemma following the hugging face naming method
*
* @param type RoPEType
*/
void init(RoPEType type = RoPEType::HFHUBROPE) {
switch (type) {
case RoPEType::HFHUBROPE: {
blk_name = "model.layers.";
_attn_base_name = "self_attn.";
_ffn_base_name = "mlp.";
_q_proj_name = "q_proj";
_k_proj_name = "k_proj";
_v_proj_name = "v_proj";
_o_proj_name = "o_proj";
_gate_proj_name = "gate_proj";
_up_proj_name = "up_proj";
_down_proj_name = "down_proj";
_attn_norm_name = "input_layernorm";
_ffn_norm_name = "post_attention_layernorm";
_pre_feedforward_layernorm = "pre_feedforward_layernorm";
_post_feedforward_layernorm = "post_feedforward_layernorm";
token_embd_name = "model.embed_tokens";
post_norm_name = "model.norm";
lm_head_name = "model.embed_tokens";
break;
}
default: {
throw std::runtime_error("Unsupported gemma RoPE type");
}
}
}

std::string blk_name;
std::string token_embd_name;
std::string post_norm_name;
std::string lm_head_name;
std::string _gate_proj_name;
std::string _pre_feedforward_layernorm;
std::string _post_feedforward_layernorm;
};

struct Gemma2Config : public TransformerConfig {
explicit Gemma2Config(int token_limit, const string billions = "2B", RoPEType type = RoPEType::HFHUBROPE) :
cache_limit(token_limit) {
names_config.init(type);
if (!(billions == "2B" || billions == "2b")) {
throw std::runtime_error("Unsupported model size");
}
RoPE_type = type;
};

int vocab_size = 256000;
int max_position_embeddings = 8192;
int num_hidden_layers = 26;
int num_attention_heads = 8;
int num_key_value_heads = 4;
int hidden_size = 2304;
int sliding_window = 4096;
int intermediate_size = 9216;
int head_dim = 256;
float rms_norm_eps = 1e-6;
float rope_theta = 10000;

int cache_limit;
RoPEType RoPE_type = RoPEType::HFHUBROPE;
Gemma2NameConfig names_config;
};

#endif //! CONFIG_GEMMA2_HPP
228 changes: 228 additions & 0 deletions src/models/gemma2/modeling_gemma2.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,228 @@
#ifndef MODELING_GEMMA2_HPP
#define MODELING_GEMMA2_HPP

#include "Backend.hpp"
#include "Layer.hpp"
#include "Module.hpp"
#include "Tensor.hpp"
#include "configuration_gemma2.hpp"
#include <cmath>
using namespace mllm;

class Gemma2Attention final : public Module {
public:
Gemma2Attention() {}
Gemma2Attention(const Gemma2Config &config, const Gemma2NameConfig &names, const string &base_name) {
hidden_size = config.hidden_size;
num_heads = config.num_attention_heads;
// in gemma2, the head_dim is fixed to 2048 / num_heads rather than hidden_size(2304) / num_heads
head_dim = 2048 / num_heads;
num_key_value_heads = config.num_key_value_heads;
num_key_value_groups = num_heads / num_key_value_heads;

// init layers
q_proj = Linear(hidden_size, head_dim * num_heads, false, base_name + names._q_proj_name);
k_proj = Linear(hidden_size, head_dim * num_key_value_heads, false,
base_name + names._k_proj_name);
v_proj = Linear(hidden_size, head_dim * num_key_value_heads, false,
base_name + names._v_proj_name);
o_proj = Linear(head_dim * num_heads, hidden_size, false, base_name + names._o_proj_name);
q_rope = RoPE(config.RoPE_type, config.rope_theta, config.max_position_embeddings,
base_name + "q_rope");
k_rope = RoPE(config.RoPE_type, config.rope_theta, config.max_position_embeddings,
base_name + "k_rope");
k_cache = KVCache(num_key_value_groups, config.cache_limit, base_name + "k_cache");
v_cache = KVCache(num_key_value_groups, config.cache_limit, base_name + "v_cache");

softmax = Softmax(DIMENSION, true, base_name + "softmax");
}

std::vector<Tensor> Forward(std::vector<Tensor> inputs, std::vector<std::any> args) override {
auto query_states = q_proj(inputs[0]);
auto key_states = k_proj(inputs[1]);
auto value_states = v_proj(inputs[2]);

// [batch, heads, sequence, dims]
query_states = query_states.view(-1, num_heads, -1, head_dim);
key_states = key_states.view(-1, num_key_value_heads, -1, head_dim);
value_states = value_states.view(-1, num_key_value_heads, -1, head_dim);

// embedding
query_states = q_rope(query_states);
key_states = k_rope(key_states);

// kv cache
key_states = k_cache(key_states);
value_states = v_cache(value_states);

// attention weight
auto atten_weight =
Tensor::mm(query_states, key_states.transpose(Chl::SEQUENCE, Chl::DIMENSION))
/ std::sqrt(head_dim);

atten_weight = softmax(atten_weight, k_cache.getCacheSeqLen());

// attention output
auto atten_output = Tensor::mm(atten_weight, value_states);
atten_output = atten_output.view(-1, 1, -1, head_dim * num_heads);
atten_output = o_proj(atten_output);
return {atten_output};
}

vector<KVCache *> get_cache() {
return {&k_cache, &v_cache};
}
vector<RoPE *> get_rope() {
return {&q_rope, &k_rope};
}

private:
int hidden_size;
int num_heads;
int head_dim;
int num_key_value_heads;
int num_key_value_groups;
int layer_num = 0;
Layer q_proj;
Layer k_proj;
Layer v_proj;
Layer o_proj;
RoPE q_rope;
RoPE k_rope;
KVCache k_cache;
KVCache v_cache;
Softmax softmax;
};

class Gemma2MLP final : public Module {
public:
Gemma2MLP() = default;
Gemma2MLP(int hidden_size, int intermediate_size, const Gemma2NameConfig &names, const std::string &base_name) {
gate_proj = Linear(hidden_size, intermediate_size, false, base_name + names._gate_proj_name);
gelu = GELU(base_name + "act");
up_proj = Linear(hidden_size, intermediate_size, false, base_name + names._up_proj_name);
down_proj = Linear(intermediate_size, hidden_size, false, base_name + names._down_proj_name);
}

std::vector<Tensor> Forward(std::vector<Tensor> inputs, std::vector<std::any> args) override {
auto x = gate_proj(inputs[0]);
x = gelu(x);
auto y = up_proj(inputs[0]);
x = x * y;
x = down_proj(x);
return {x};
}

private:
Layer gate_proj;
Layer up_proj;
Layer down_proj;

Layer gelu; ///< F.gelu(gate, approximate="tanh")
};

class Gemma2Decoder final : public Module {
public:
Gemma2Decoder() = default;
Gemma2Decoder(const Gemma2Config &config, const Gemma2NameConfig &names, const string &base_name) {
self_attn = Gemma2Attention(config, names, base_name + names._attn_base_name);
mlp = Gemma2MLP(config.hidden_size, config.intermediate_size, names, base_name + names._ffn_base_name);
input_layernorm = RMSNorm(config.hidden_size, config.rms_norm_eps, true, base_name + names._attn_norm_name);
post_attention_layernorm = RMSNorm(config.hidden_size, config.rms_norm_eps, true, base_name + names._ffn_norm_name);
pre_feedforward_layernorm = RMSNorm(config.hidden_size, config.rms_norm_eps, true, base_name + names._pre_feedforward_layernorm);
post_feedforward_layernorm = RMSNorm(config.hidden_size, config.rms_norm_eps, true, base_name + names._post_feedforward_layernorm);
}

std::vector<Tensor> Forward(std::vector<Tensor> inputs, std::vector<std::any> args) override {
auto x = input_layernorm(inputs[0]);
x = self_attn({x, x, x})[0];
x = post_attention_layernorm(x);
auto tmp = x + inputs[0];
x = pre_feedforward_layernorm(tmp);
x = mlp({x})[0];
x = post_feedforward_layernorm(x);
x = x + tmp;
return {x};
}

Gemma2Attention &get_attention() {
return self_attn;
}

private:
// MultiHeadAttention self_attn;
Gemma2Attention self_attn;
Gemma2MLP mlp;
Layer input_layernorm;
Layer post_attention_layernorm;
Layer pre_feedforward_layernorm;
Layer post_feedforward_layernorm;
};

class Gemma2Model final : public Module {
public:
Gemma2Model() = default;
Gemma2Model(const Gemma2Config &config, const Gemma2NameConfig &names, const string &base_name) {
blocks = List<Gemma2Decoder>(config.num_hidden_layers, config, names, base_name);
norm = RMSNorm(config.hidden_size, config.rms_norm_eps, true, names.post_norm_name);
}

std::vector<Tensor> Forward(std::vector<Tensor> inputs, std::vector<std::any> args) override {
auto x = inputs[0];
for (auto &block : blocks) {
x = block({x})[0];
}
x = norm(x);
return {x};
}

void clear_kvcache() override {
for (auto &block : blocks) {
auto kvcache = block.get_attention().get_cache();
for (auto &cache : kvcache) { cache->clearCache(); }
auto ropes = block.get_attention().get_rope();
for (auto &rope : ropes) { rope->clearCache(); }
}
}

private:
std::vector<Gemma2Decoder> blocks;
Layer norm;
};

class Gemma2ForCausalLM final : public Module {
public:
Gemma2ForCausalLM(Gemma2Config &config) {
auto names = config.names_config;
hidden_size = config.hidden_size;
embedding = Embedding(config.vocab_size, config.hidden_size, names.token_embd_name);
model = Gemma2Model(config, names, names.blk_name);

// gemma's lm_head and tok_embedding is tied together.
// They share same parameters. Use a Transpose to do the lm_head instead.
lm_head = Parameter(1, config.vocab_size, 1, config.hidden_size, names.lm_head_name + ".weight");
}

std::vector<Tensor> Forward(std::vector<Tensor> inputs, std::vector<std::any> args) override {
auto x = embedding(inputs[0]);

// do nomalize
x = x * std::sqrt(hidden_size);

// go through model
auto outputs = model({x})[0];
outputs = Tensor::mm(outputs, lm_head().transpose(Chl::SEQUENCE, Chl::DIMENSION));
return {outputs};
}
void clear_kvcache() override {
model.clear_kvcache();
}

private:
int hidden_size;
Layer embedding;
Parameter lm_head;
Gemma2Model model;
};

#endif //! MODELING_GEMMA2_HPP
Binary file added vocab/gemma2_vocab.mllm
Binary file not shown.
Loading