Welcome to Awesome-Mixup, a carefully curated survey of Mixup algorithms implemented in the PyTorch library, aiming to meet various needs of the research community. Mixup is a kind of methods that focus on alleviating model overfitting and poor generalization. As a "data-centric" way, Mixup can be applied to various training paradigms and data modalities.
If this repository has been helpful to you, please consider giving it a ⭐️ to show your support. Your support helps us reach more researchers and contributes to the growth of this resource. Thank you!
We summarize awesome mixup data augmentation methods for visual representation learning in various scenarios from 2018 to 2024.
The list of awesome mixup augmentation methods is summarized in chronological order and is on updating. The main branch is modified according to Awesome-Mixup in OpenMixup and Awesome-Mix, and we are working on a comperhensive survey on mixup augmentations. You can read our survey: A Survey on Mixup Augmentations and Beyond see more detailed information.
- To find related papers and their relationships, check out Connected Papers, which visualizes the academic field in a graph representation.
- To export BibTeX citations of papers, check out ArXiv or Semantic Scholar of the paper for professional reference formats.
You can see the figuer of mixup augmentation methods deirtly that we summarized.
Table of Contents
- Analysis and Theorem
- Survey
- Benchmark
- Classification Results on Datasets
- Related Datasets Link
- Contribution
- License
- Acknowledgement
- Related Project
Sample Mixup Policies in SL
Label Mixup Policies in SL
Self-Supervised Learning
Semi-Supervised Learning
CV Downstream Tasks
Training Paradigms
-
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, David Lopez-Paz
ICLR'2018 [Paper] [Code] -
Between-class Learning for Image Classification
Yuji Tokozume, Yoshitaka Ushiku, Tatsuya Harada
CVPR'2018 [Paper] [Code] -
Preventing Manifold Intrusion with Locality: Local Mixup
Raphael Baena, Lucas Drumetz, Vincent Gripon
EUSIPCO'2022 [Paper] -
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty
Dan Hendrycks, Norman Mu, Ekin D. Cubuk, Barret Zoph, Justin Gilmer, Balaji Lakshminarayanan
ICLR'2020 [Paper] [Code] -
DJMix: Unsupervised Task-agnostic Augmentation for Improving Robustness
Ryuichiro Hataya, Hideki Nakayama
arXiv'2021 [Paper] -
PixMix: Dreamlike Pictures Comprehensively Improve Safety Measures
Dan Hendrycks, Andy Zou, Mantas Mazeika, Leonard Tang, Bo Li, Dawn Song, Jacob Steinhardt
CVPR'2022 [Paper] [Code] -
IPMix: Label-Preserving Data Augmentation Method for Training Robust Classifiers
Zhenglin Huang, Xiaoan Bao, Na Zhang, Qingqi Zhang, Xiaomei Tu, Biao Wu, Xi Yang
NIPS'2023 [Paper] [Code]
-
Manifold Mixup: Better Representations by Interpolating Hidden States
Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-Paz, Yoshua Bengio
ICML'2019 [Paper] [Code] -
PatchUp: A Regularization Technique for Convolutional Neural Networks
Mojtaba Faramarzi, Mohammad Amini, Akilesh Badrinaaraayanan, Vikas Verma, Sarath Chandar
arXiv'2020 [Paper] [Code] -
On Feature Normalization and Data Augmentation
Boyi Li, Felix Wu, Ser-Nam Lim, Serge Belongie, Kilian Q. Weinberger
CVPR'2021 [Paper] [Code] -
Catch-Up Mix: Catch-Up Class for Struggling Filters in CNN
Minsoo Kang, Minkoo Kang, Suhyun Kim
AAAI'2024 [Paper]
-
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, Youngjoon Yoo
ICCV'2019 [Paper] [Code] -
Improved Mixed-Example Data Augmentation
Cecilia Summers, Michael J. Dinneen
WACV'2019 [Paper] [Code] -
Patch-level Neighborhood Interpolation: A General and Effective Graph-based Regularization Strategy
Ke Sun, Bing Yu, Zhouchen Lin, Zhanxing Zhu
arXiv'2019 [Paper] -
FMix: Enhancing Mixed Sample Data Augmentation
Ethan Harris, Antonia Marcu, Matthew Painter, Mahesan Niranjan, Adam Prügel-Bennett, Jonathon Hare
arXiv'2020 [Paper] [Code] -
SmoothMix: a Simple Yet Effective Data Augmentation to Train Robust Classifiers
Jin-Ha Lee, Muhammad Zaigham Zaheer, Marcella Astrid, Seung-Ik Lee
CVPRW'2020 [Paper] [Code] -
GridMix: Strong regularization through local context mapping
Kyungjune Baek, Duhyeon Bang, Hyunjung Shim
Pattern Recognition'2021 [Paper] [Code] -
ResizeMix: Mixing Data with Preserved Object Information and True Labels
Jie Qin, Jiemin Fang, Qian Zhang, Wenyu Liu, Xingang Wang, Xinggang Wang
arXiv'2020 [Paper] [Code] -
StackMix: A complementary Mix algorithm
John Chen, Samarth Sinha, Anastasios Kyrillidis
UAI'2022 [Paper] -
SuperpixelGridCut, SuperpixelGridMean and SuperpixelGridMix Data Augmentation
Karim Hammoudi, Adnane Cabani, Bouthaina Slika, Halim Benhabiles, Fadi Dornaika, Mahmoud Melkemi
arXiv'2022 [Paper] [Code] -
A Unified Analysis of Mixed Sample Data Augmentation: A Loss Function Perspective
Chanwoo Park, Sangdoo Yun, Sanghyuk Chun
NIPS'2022 [Paper] [Code] -
You Only Cut Once: Boosting Data Augmentation with a Single Cut
Junlin Han, Pengfei Fang, Weihao Li, Jie Hong, Mohammad Ali Armin, Ian Reid, Lars Petersson, Hongdong Li
ICML'2022 [Paper] [Code] -
StarLKNet: Star Mixup with Large Kernel Networks for Palm Vein Identification
Xin Jin, Hongyu Zhu, Mounîm A.El Yacoubi, Hongchao Liao, Huafeng Qin, Yun Jiang
arXiv'2024 [Paper]
-
You Only Look Once: Unified, Real-Time Object Detection
Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi
CVPR'2016 [Paper] [Code] -
Data Augmentation using Random Image Cropping and Patching for Deep CNNs
Ryo Takahashi, Takashi Matsubara, Kuniaki Uehara
IEEE TCSVT'2020 [Paper] -
k-Mixup Regularization for Deep Learning via Optimal Transport
Kristjan Greenewald, Anming Gu, Mikhail Yurochkin, Justin Solomon, Edward Chien
arXiv'2021 [Paper] -
Observations on K-image Expansion of Image-Mixing Augmentation for Classification
Joonhyun Jeong, Sungmin Cha, Youngjoon Yoo, Sangdoo Yun, Taesup Moon, Jongwon Choi
IEEE Access'2021 [Paper] [Code] -
MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks
Alexandre Rame, Remy Sun, Matthieu Cord
ICCV'2021 [Paper] -
Cut-Thumbnail: A Novel Data Augmentation for Convolutional Neural Network
Tianshu Xie, Xuan Cheng, Minghui Liu, Jiali Deng, Xiaomin Wang, Ming Liu
ACM MM;2021 [Paper]
-
RandomMix: A mixed sample data augmentation method with multiple mixed modes
Xiaoliang Liu, Furao Shen, Jian Zhao, Changhai Nie
arXiv'2022 [Paper] -
AugRmixAT: A Data Processing and Training Method for Improving Multiple Robustness and Generalization Performance
Xiaoliang Liu, Furao Shen, Jian Zhao, Changhai Nie
ICME'2022 [Paper]
-
StyleMix: Separating Content and Style for Enhanced Data Augmentation
Minui Hong, Jinwoo Choi, Gunhee Kim
CVPR'2021 [Paper] [Code] -
Domain Generalization with MixStyle
Kaiyang Zhou, Yongxin Yang, Yu Qiao, Tao Xiang
ICLR'2021 [Paper] [Code] -
AlignMix: Improving representation by interpolating aligned features
Shashanka Venkataramanan, Ewa Kijak, Laurent Amsaleg, Yannis Avrithis
CVPR'2022 [Paper] [Code]
- Embedding Space Interpolation Beyond Mini-Batch, Beyond Pairs and Beyond Examples
Shashanka Venkataramanan, Ewa Kijak, Laurent Amsaleg, Yannis Avrithis
NIPS'2023 [Paper]
-
SaliencyMix: A Saliency Guided Data Augmentation Strategy for Better Regularization
A F M Shahab Uddin and Mst. Sirazam Monira and Wheemyung Shin and TaeChoong Chung and Sung-Ho Bae
ICLR'2021 [Paper] [Code] -
Attentive CutMix: An Enhanced Data Augmentation Approach for Deep Learning Based Image Classification
Devesh Walawalkar, Zhiqiang Shen, Zechun Liu, Marios Savvides
ICASSP'2020 [Paper] [Code] -
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data
Shaoli Huang, Xinchao Wang, Dacheng Tao
AAAI'2021 [Paper] [Code] -
Attribute Mix: Semantic Data Augmentation for Fine Grained Recognition
Hao Li, Xiaopeng Zhang, Hongkai Xiong, Qi Tian
VCIP'2020 [Paper] -
Where to Cut and Paste: Data Regularization with Selective Features
Jiyeon Kim, Ik-Hee Shin, Jong-Ryul, Lee, Yong-Ju Lee
ICTC'2020 [Paper] [Code] -
PuzzleMix: Exploiting Saliency and Local Statistics for Optimal Mixup
Jang-Hyun Kim, Wonho Choo, Hyun Oh Song
ICML'2020 [Paper] [Code] -
Co-Mixup: Saliency Guided Joint Mixup with Supermodular Diversity
Jang-Hyun Kim, Wonho Choo, Hosan Jeong, Hyun Oh Song
ICLR'2021 [Paper] [Code] -
SuperMix: Supervising the Mixing Data Augmentation
Ali Dabouei, Sobhan Soleymani, Fariborz Taherkhani, Nasser M. Nasrabadi
CVPR'2021 [Paper] [Code] -
AutoMix: Unveiling the Power of Mixup for Stronger Classifiers
Zicheng Liu, Siyuan Li, Di Wu, Zihan Liu, Zhiyuan Chen, Lirong Wu, Stan Z. Li
ECCV'2022 [Paper] [Code] -
Boosting Discriminative Visual Representation Learning with Scenario-Agnostic Mixup
Siyuan Li, Zicheng Liu, Di Wu, Zihan Liu, Stan Z. Li
arXiv'2021 [Paper] [Code] -
RecursiveMix: Mixed Learning with History
Lingfeng Yang, Xiang Li, Borui Zhao, Renjie Song, Jian Yang
NIPS'2022 [Paper] [Code] -
TransformMix: Learning Transformation and Mixing Strategies for Sample-mixing Data Augmentation
Tsz-Him Cheung, Dit-Yan Yeung
OpenReview'2023 [Paper] -
GuidedMixup: An Efficient Mixup Strategy Guided by Saliency Maps
Minsoo Kang, Suhyun Kim
AAAI'2023 [Paper] [Code] -
GradSalMix: Gradient Saliency-Based Mix for Image Data Augmentation
Tao Hong, Ya Wang, Xingwu Sun, Fengzong Lian, Zhanhui Kang, Jinwen Ma
ICME'2023 [Paper] -
LGCOAMix: Local and Global Context-and-Object-Part-Aware Superpixel-Based Data Augmentation for Deep Visual Recognition
Fadi Dornaika, Danyang Sun
TIP'2023 [Paper] [Code] -
Adversarial AutoMixup
Huafeng Qin, Xin Jin, Yun Jiang, Mounim A. El-Yacoubi, Xinbo Gao
ICLR'2024 [Paper] [Code]
-
TokenMix: Rethinking Image Mixing for Data Augmentation in Vision Transformers
Jihao Liu, Boxiao Liu, Hang Zhou, Hongsheng Li, Yu Liu
ECCV'2022 [Paper] [Code] -
TokenMixup: Efficient Attention-guided Token-level Data Augmentation for Transformers
Hyeong Kyu Choi, Joonmyung Choi, Hyunwoo J. Kim
NIPS'2022 [Paper] [Code] -
ScoreNet: Learning Non-Uniform Attention and Augmentation for Transformer-Based Histopathological Image Classification
Thomas Stegmüller, Behzad Bozorgtabar, Antoine Spahr, Jean-Philippe Thiran
WACV'2023 [Paper] -
MixPro: Data Augmentation with MaskMix and Progressive Attention Labeling for Vision Transformer
Qihao Zhao, Yangyu Huang, Wei Hu, Fan Zhang, Jun Liu
ICLR'2023 [Paper] [Code] -
SMMix: Self-Motivated Image Mixing for Vision Transformers
Mengzhao Chen, Mingbao Lin, ZhiHang Lin, Yuxin Zhang, Fei Chao, Rongrong Ji
ICCV'2023 [Paper] [Code]
-
Data Augmentation via Latent Space Interpolation for Image Classification
*Xiaofeng Liu, Yang Zou, Lingsheng Kong, Zhihui Diao, Junliang Yan, Jun Wang, Site Li, Ping Jia, Jane You
ICPR'2018 [Paper] -
On Adversarial Mixup Resynthesis
Christopher Beckham, Sina Honari, Vikas Verma, Alex Lamb, Farnoosh Ghadiri, R Devon Hjelm, Yoshua Bengio, Christopher Pal
NIPS'2019 [Paper] [Code] -
AutoMix: Mixup Networks for Sample Interpolation via Cooperative Barycenter Learning
Jianchao Zhu, Liangliang Shi, Junchi Yan, Hongyuan Zha
ECCV'2020 [Paper] -
VarMixup: Exploiting the Latent Space for Robust Training and Inference
Puneet Mangla, Vedant Singh, Shreyas Jayant Havaldar, Vineeth N Balasubramanian
CVPRW'2021 [Paper] -
DiffuseMix: Label-Preserving Data Augmentation with Diffusion Models
Khawar Islam, Muhammad Zaigham Zaheer, Arif Mahmood, Karthik Nandakumar
CVPR'2024 [Paper] [Code]
-
Combining Ensembles and Data Augmentation can Harm your Calibration
Yeming Wen, Ghassen Jerfel, Rafael Muller, Michael W. Dusenberry, Jasper Snoek, Balaji Lakshminarayanan, Dustin Tran
ICLR'2021 [Paper] [Code] -
RankMixup: Ranking-Based Mixup Training for Network Calibration
Jongyoun Noh, Hyekang Park, Junghyup Lee, Bumsub Ham
ICCV'2023 [Paper] [Code] -
SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness
Jongheon Jeong, Sejun Park, Minkyu Kim, Heung-Chang Lee, Doguk Kim, Jinwoo Shin
NIPS'2021 [Paper] [Code]
-
TransMix: Attend to Mix for Vision Transformers
Jie-Neng Chen, Shuyang Sun, Ju He, Philip Torr, Alan Yuille, Song Bai
CVPR'2022 [Paper] [Code] -
Data Augmentation using Random Image Cropping and Patching for Deep CNNs
Ryo Takahashi, Takashi Matsubara, Kuniaki Uehara
IEEE TCSVT'2020 [Paper] -
RecursiveMix: Mixed Learning with History
Lingfeng Yang, Xiang Li, Borui Zhao, Renjie Song, Jian Yang
NIPS'2022 [Paper] [Code]
-
Harnessing Hard Mixed Samples with Decoupled Regularizer
Zicheng Liu, Siyuan Li, Ge Wang, Cheng Tan, Lirong Wu, Stan Z. Li
NIPS'2023 [Paper] [Code] -
MixupE: Understanding and Improving Mixup from Directional Derivative Perspective
Vikas Verma, Sarthak Mittal, Wai Hoh Tang, Hieu Pham, Juho Kannala, Yoshua Bengio, Arno Solin, Kenji Kawaguchi
UAI'2023 [Paper] [Code]
-
Mixup Without Hesitation
Hao Yu, Huanyu Wang, Jianxin Wu
ICIG'2022 [Paper] [Code] -
RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and Out Distribution Robustness
Francesco Pinto, Harry Yang, Ser-Nam Lim, Philip H.S. Torr, Puneet K. Dokania
NIPS'2022 [Paper] [Code]
-
MixUp as Locally Linear Out-Of-Manifold Regularization
Hongyu Guo, Yongyi Mao, Richong Zhang
AAAI'2019 [Paper] -
RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and Out Distribution Robustness
Francesco Pinto, Harry Yang, Ser-Nam Lim, Philip H.S. Torr, Puneet K. Dokania
NIPS'2022 [Paper] [Code] -
Metamixup: Learning adaptive interpolation policy of mixup with metalearning
Zhijun Mai, Guosheng Hu, Dexiong Chen, Fumin Shen, Heng Tao Shen
IEEE TNNLS'2021 [Paper] -
LUMix: Improving Mixup by Better Modelling Label Uncertainty
Shuyang Sun, Jie-Neng Chen, Ruifei He, Alan Yuille, Philip Torr, Song Bai
ICASSP'2024 [Paper] [Code] -
SUMix: Mixup with Semantic and Uncertain Information
Huafeng Qin, Xin Jin, Hongyu Zhu, Hongchao Liao, Mounîm A. El-Yacoubi, Xinbo Gao
ECCV'2024 [Paper] [Code]
- GenLabel: Mixup Relabeling using Generative Models
Jy-yong Sohn, Liang Shang, Hongxu Chen, Jaekyun Moon, Dimitris Papailiopoulos, Kangwook Lee
ICML'2022 [Paper]
-
All Tokens Matter: Token Labeling for Training Better Vision Transformers
Zihang Jiang, Qibin Hou, Li Yuan, Daquan Zhou, Yujun Shi, Xiaojie Jin, Anran Wang, Jiashi Feng
NIPS'2021 [Paper] [Code] -
TokenMix: Rethinking Image Mixing for Data Augmentation in Vision Transformers
Jihao Liu, Boxiao Liu, Hang Zhou, Hongsheng Li, Yu Liu
ECCV'2022 [Paper] [Code] -
TokenMixup: Efficient Attention-guided Token-level Data Augmentation for Transformers
Hyeong Kyu Choi, Joonmyung Choi, Hyunwoo J. Kim
NIPS'2022 [Paper] [Code] -
MixPro: Data Augmentation with MaskMix and Progressive Attention Labeling for Vision Transformer
Qihao Zhao, Yangyu Huang, Wei Hu, Fan Zhang, Jun Liu
ICLR'2023 [Paper] [Code] -
Token-Label Alignment for Vision Transformers
Han Xiao, Wenzhao Zheng, Zheng Zhu, Jie Zhou, Jiwen Lu
ICCV'2023 [Paper] [Code]
-
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data
Shaoli Huang, Xinchao Wang, Dacheng Tao
AAAI'2021 [Paper] [Code] -
Saliency Grafting: Innocuous Attribution-Guided Mixup with Calibrated Label Mixing
Joonhyung Park, June Yong Yang, Jinwoo Shin, Sung Ju Hwang, Eunho Yang
AAAI'2022 [Paper]
-
MixCo: Mix-up Contrastive Learning for Visual Representation
Sungnyun Kim, Gihun Lee, Sangmin Bae, Se-Young Yun
NIPSW'2020 [Paper] [Code] -
Hard Negative Mixing for Contrastive Learning
Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe Weinzaepfel, Diane Larlus
NIPS'2020 [Paper] [Code] -
i-Mix A Domain-Agnostic Strategy for Contrastive Representation Learning
Kibok Lee, Yian Zhu, Kihyuk Sohn, Chun-Liang Li, Jinwoo Shin, Honglak Lee
ICLR'2021 [Paper] [Code] -
Beyond Single Instance Multi-view Unsupervised Representation Learning
Xiangxiang Chu, Xiaohang Zhan, Xiaolin Wei
BMVC'2022 [Paper] -
Improving Contrastive Learning by Visualizing Feature Transformation
Rui Zhu, Bingchen Zhao, Jingen Liu, Zhenglong Sun, Chang Wen Chen
ICCV'2021 [Paper] [Code] -
Mix-up Self-Supervised Learning for Contrast-agnostic Applications
Yichen Zhang, Yifang Yin, Ying Zhang, Roger Zimmermann
ICME'2021 [Paper] -
Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning
Yifan Zhang, Bryan Hooi, Dapeng Hu, Jian Liang, Jiashi Feng
NIPS'2021 [Paper] [Code] -
Center-wise Local Image Mixture For Contrastive Representation Learning
Hao Li, Xiaopeng Zhang, Hongkai Xiong
BMVC'2021 [Paper] -
Piecing and Chipping: An effective solution for the information-erasing view generation in Self-supervised Learning
Jingwei Liu, Yi Gu, Shentong Mo, Zhun Sun, Shumin Han, Jiafeng Guo, Xueqi Cheng
OpenReview'2021 [Paper] -
Boosting Discriminative Visual Representation Learning with Scenario-Agnostic Mixup
Siyuan Li, Zicheng Liu, Di Wu, Zihan Liu, Stan Z. Li
arXiv'2021 [Paper] [Code] -
MixSiam: A Mixture-based Approach to Self-supervised Representation Learning
Xiaoyang Guo, Tianhao Zhao, Yutian Lin, Bo Du
OpenReview'2021 [Paper] -
Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing
Aadarsh Sahoo, Rutav Shah, Rameswar Panda, Kate Saenko, Abir Das
NIPS'2021 [Paper] [Code] -
Un-Mix: Rethinking Image Mixtures for Unsupervised Visual Representation
Zhiqiang Shen, Zechun Liu, Zhuang Liu, Marios Savvides, Trevor Darrell, Eric Xing
AAAI'2022 [Paper] [Code] -
m-Mix: Generating Hard Negatives via Multi-sample Mixing for Contrastive Learning
Shaofeng Zhang, Meng Liu, Junchi Yan, Hengrui Zhang, Lingxiao Huang, Pinyan Lu, Xiaokang Yang
KDD'2022 [Paper] [Code] -
A Simple Data Mixing Prior for Improving Self-Supervised Learning
Sucheng Ren, Huiyu Wang, Zhengqi Gao, Shengfeng He, Alan Yuille, Yuyin Zhou, Cihang Xie
CVPR'2022 [Paper] [Code] -
CropMix: Sampling a Rich Input Distribution via Multi-Scale Cropping
Junlin Han, Lars Petersson, Hongdong Li, Ian Reid
arXiv'2022 [Paper] [Code] -
Mixing up contrastive learning: Self-supervised representation learning for time series
Kristoffer Wickstrøm, Michael Kampffmeyer, Karl Øyvind Mikalsen, Robert Jenssen
PR Letter'2022 [Paper] -
Towards Domain-Agnostic Contrastive Learning
Vikas Verma, Minh-Thang Luong, Kenji Kawaguchi, Hieu Pham, Quoc V. Le
ICML'2021 [Paper] -
ProGCL: Rethinking Hard Negative Mining in Graph Contrastive Learning
Jun Xia, Lirong Wu, Ge Wang, Jintao Chen, Stan Z.Li
ICML'2022 [Paper] [Code] -
Evolving Image Compositions for Feature Representation Learning
Paola Cascante-Bonilla, Arshdeep Sekhon, Yanjun Qi, Vicente Ordonez
BMVC'2021 [Paper] -
On the Importance of Asymmetry for Siamese Representation Learning
Xiao Wang, Haoqi Fan, Yuandong Tian, Daisuke Kihara, Xinlei Chen
CVPR'2022 [Paper] [Code] -
Geodesic Multi-Modal Mixup for Robust Fine-Tuning
Changdae Oh, Junhyuk So, Hoyoon Byun, YongTaek Lim, Minchul Shin, Jong-June Jeon, Kyungwoo Song
NIPS'2023 [Paper] [Code]
-
i-MAE: Are Latent Representations in Masked Autoencoders Linearly Separable
Kevin Zhang, Zhiqiang Shen
arXiv'2022 [Paper] [Code] -
MixMAE: Mixed and Masked Autoencoder for Efficient Pretraining of Hierarchical Vision Transformers
Jihao Liu, Xin Huang, Jinliang Zheng, Yu Liu, Hongsheng Li
CVPR'2023 [Paper] [Code] -
Mixed Autoencoder for Self-supervised Visual Representation Learning
Kai Chen, Zhili Liu, Lanqing Hong, Hang Xu, Zhenguo Li, Dit-Yan Yeung
CVPR'2023 [Paper]
-
MixMatch: A Holistic Approach to Semi-Supervised Learning
David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, Colin Raffel
NIPS'2019 [Paper] [Code] -
ReMixMatch: Semi-Supervised Learning with Distribution Matching and Augmentation Anchoring
David Berthelot, Nicholas Carlini, Ekin D. Cubuk, Alex Kurakin, Kihyuk Sohn, Han Zhang, Colin Raffel
ICLR'2020 [Paper] [Code] -
DivideMix: Learning with Noisy Labels as Semi-supervised Learning
Junnan Li, Richard Socher, Steven C.H. Hoi
ICLR'2020 [Paper] [Code] -
MixPUL: Consistency-based Augmentation for Positive and Unlabeled Learning
Tong Wei, Feng Shi, Hai Wang, Wei-Wei Tu. Yu-Feng Li
arXiv'2020 [Paper]MixPUL Framework
-
Milking CowMask for Semi-Supervised Image Classification
Geoff French, Avital Oliver, Tim Salimans
NIPS'2020 [Paper] [Code] -
Epsilon Consistent Mixup: Structural Regularization with an Adaptive Consistency-Interpolation Tradeoff
Vincent Pisztora, Yanglan Ou, Xiaolei Huang, Francesca Chiaromonte, Jia Li
arXiv'2021 [Paper] -
Who Is Your Right Mixup Partner in Positive and Unlabeled Learning
Changchun Li, Ximing Li, Lei Feng, Jihong Ouyang
ICLR'2021 [Paper] -
Interpolation Consistency Training for Semi-Supervised Learning
Vikas Verma, Kenji Kawaguchi, Alex Lamb, Juho Kannala, Arno Solin, Yoshua Bengio, David Lopez-Paz
NN'2022 [Paper] -
Dual-Decoder Consistency via Pseudo-Labels Guided Data Augmentation for Semi-Supervised Medical Image Segmentation
Yuanbin Chen, Tao Wang, Hui Tang, Longxuan Zhao, Ruige Zong, Tao Tan, Xinlin Zhang, Tong Tong
arXiv'2023 [Paper] -
MUM: Mix Image Tiles and UnMix Feature Tiles for Semi-Supervised Object Detection
JongMok Kim, Jooyoung Jang, Seunghyeon Seo, Jisoo Jeong, Jongkeun Na, Nojun Kwak
CVPR'2022 [Paper] [Code] -
Harnessing Hard Mixed Samples with Decoupled Regularizer
Zicheng Liu, Siyuan Li, Ge Wang, Cheng Tan, Lirong Wu, Stan Z. Li
NIPS'2023 [Paper] [Code] -
Manifold DivideMix: A Semi-Supervised Contrastive Learning Framework for Severe Label Noise
Fahimeh Fooladgar, Minh Nguyen Nhat To, Parvin Mousavi, Purang Abolmaesumi
arXiv'2023 [Paper] [Code] -
LaserMix for Semi-Supervised LiDAR Semantic Segmentation
Lingdong Kong, Jiawei Ren, Liang Pan, Ziwei Liu
CVPR'2023 [Paper] [Code] [project] -
PCLMix: Weakly Supervised Medical Image Segmentation via Pixel-Level Contrastive Learning and Dynamic Mix Augmentation
Yu Lei, Haolun Luo, Lituan Wang, Zhenwei Zhang, Lei Zhang
arXiv'2024 [Paper] [Code]
-
RegMix: Data Mixing Augmentation for Regression
Seong-Hyeon Hwang, Steven Euijong Whang
arXiv'2021 [Paper] -
C-Mixup: Improving Generalization in Regression
Huaxiu Yao, Yiping Wang, Linjun Zhang, James Zou, Chelsea Finn
NIPS'2022 [Paper] [Code] -
ExtraMix: Extrapolatable Data Augmentation for Regression using Generative Models
Kisoo Kwon, Kuhwan Jeong, Sanghyun Park, Sangha Park, Hoshik Lee, Seung-Yeon Kwak, Sungmin Kim, Kyunghyun Cho
OpenReview'2022 [Paper] -
Rank-N-Contrast: Learning Continuous Representations for Regression
Kaiwen Zha, Peng Cao, Jeany Son, Yuzhe Yang, Dina Katabi
NIPS'2023 [Paper] [Code] -
Anchor Data Augmentation
Nora Schneider, Shirin Goshtasbpour, Fernando Perez-Cruz
NIPS'2023 [Paper] -
Mixup Your Own Pairs
Yilei Wu, Zijian Dong, Chongyao Chen, Wangchunshu Zhou, Juan Helen Zhou
arXiv'2023 [Paper] [Code] -
Tailoring Mixup to Data using Kernel Warping functions
Quentin Bouniot, Pavlo Mozharovskyi, Florence d'Alché-Buc
arXiv'2023 [Paper] [Code] -
OmniMixup: Generalize Mixup with Mixing-Pair Sampling Distribution
Anonymous
Openreview'2023 [Paper] -
Augment on Manifold: Mixup Regularization with UMAP
Yousef El-Laham, Elizabeth Fons, Dillon Daudert, Svitlana Vyetrenko
ICASSP'2024 [Paper]
-
Remix: Rebalanced Mixup
Hsin-Ping Chou, Shih-Chieh Chang, Jia-Yu Pan, Wei Wei, Da-Cheng Juan
ECCVW'2020 [Paper] -
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective
Zhengzhuo Xu, Zenghao Chai, Chun Yuan
NIPS'2021 [Paper] [Code] -
Label-Occurrence-Balanced Mixup for Long-tailed Recognition
Shaoyu Zhang, Chen Chen, Xiujuan Zhang, Silong Peng
ICASSP'2022 [Paper] -
DBN-Mix: Training Dual Branch Network Using Bilateral Mixup Augmentation for Long-Tailed Visual Recognition
Jae Soon Baik, In Young Yoon, Jun Won Choi
PR'2024 [Paper]
-
ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning
Viktor Olsson, Wilhelm Tranheden, Juliano Pinto, Lennart Svensson
WACV'2021 [Paper] [Code] -
ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation
Matheus Barros Pereira, Jefersson Alex dos Santos
SIBGRAPI'2021 [Paper] -
CycleMix: A Holistic Strategy for Medical Image Segmentation from Scribble Supervision
Ke Zhang, Xiahai Zhuang
CVPR'2022 [Paper] [Code] -
InsMix: Towards Realistic Generative Data Augmentation for Nuclei Instance Segmentation
Yi Lin, Zeyu Wang, Kwang-Ting Cheng, Hao Chen
MICCAI'2022 [Paper] [Code] -
LaserMix for Semi-Supervised LiDAR Semantic Segmentation
Lingdong Kong, Jiawei Ren, Liang Pan, Ziwei Liu
CVPR'2023 [Paper] [Code] [project] -
Dual-Decoder Consistency via Pseudo-Labels Guided Data Augmentation for Semi-Supervised Medical Image Segmentation
Yuanbin Chen, Tao Wang, Hui Tang, Longxuan Zhao, Ruige Zong, Tao Tan, Xinlin Zhang, Tong Tong
arXiv'2023 [Paper] -
SA-MixNet: Structure-aware Mixup and Invariance Learning for Scribble-supervised Road Extraction in Remote Sensing Images
Jie Feng, Hao Huang, Junpeng Zhang, Weisheng Dong, Dingwen Zhang, Licheng Jiao
arXiv'2024 [Paper] [Code] -
Constructing and Exploring Intermediate Domains in Mixed Domain Semi-supervised Medical Image Segmentation
Qinghe Ma, Jian Zhang, Lei Qi, Qian Yu, Yinghuan Shi, Yang Gao
CVPR'2024 [Paper] [Code] -
UniMix: Towards Domain Adaptive and Generalizable LiDAR Semantic Segmentation in Adverse Weather
Haimei Zhao, Jing Zhang, Zhuo Chen, Shanshan Zhao, Dacheng Tao
CVPR'2024 [Paper] [Code] -
ModelMix: A Holistic Strategy for Medical Image Segmentation from Scribble Supervision
Ke Zhang, Vishal M. Patel
MICCAI'2024 [Paper]
-
MUM: Mix Image Tiles and UnMix Feature Tiles for Semi-Supervised Object Detection
JongMok Kim, Jooyoung Jang, Seunghyeon Seo, Jisoo Jeong, Jongkeun Na, Nojun Kwak
CVPR'2022 [Paper] [Code] -
Mixed Pseudo Labels for Semi-Supervised Object Detection
Zeming Chen, Wenwei Zhang, Xinjiang Wang, Kai Chen, Zhi Wang
arXiv'2023 [Paper] [Code] -
MS-DETR: Efficient DETR Training with Mixed Supervision
Chuyang Zhao, Yifan Sun, Wenhao Wang, Qiang Chen, Errui Ding, Yi Yang, Jingdong Wang
arXiv'2024 [Paper] [Code]
-
XOR Mixup: Privacy-Preserving Data Augmentation for One-Shot Federated Learning
MyungJae Shin, Chihoon Hwang, Joongheon Kim, Jihong Park, Mehdi Bennis, Seong-Lyun Kim
ICML'2020 [Paper] [Code] -
FedMix: Approximation of Mixup Under Mean augmented Federated Learning
Tehrim Yoon, Sumin Shin, Sung Ju Hwang, Eunho Yang
ECCV'2022 [Paper] [Code] -
Mix2FLD: Downlink Federated Learning After Uplink Federated Distillation With Two-Way Mixup
Seungeun Oh, Jihong Park, Eunjeong Jeong, Hyesung Kim, Mehdi Bennis, Seong-Lyun Kim
IEEE Communications Letters'2020 [Paper] -
StatMix: Data augmentation method that relies on image statistics in federated learning
Dominik Lewy, Jacek Mańdziuk, Maria Ganzha, Marcin Paprzycki
ICONIP'2022 [Paper]
-
Addressing Neural Network Robustness with Mixup and Targeted Labeling Adversarial Training
Alfred Laugros, Alice Caplier, Matthieu Ospici
ECCV'2020 [Paper] -
Mixup Inference: Better Exploiting Mixup to Defend Adversarial Attacks
Tianyu Pang, Kun Xu, Jun Zhu
ICLR'2020 [Paper] [Code] -
Adversarial Vertex Mixup: Toward Better Adversarially Robust Generalization
Saehyung Lee, Hyungyu Lee, Sungroh Yoon
CVPR'2020 [Paper] [Code] -
Adversarial Mixing Policy for Relaxing Locally Linear Constraints in Mixup
Guang Liu, Yuzhao Mao, Hailong Huang, Weiguo Gao, Xuan Li
EMNLP'2021 [Paper] -
Adversarially Optimized Mixup for Robust Classification
Jason Bunk, Srinjoy Chattopadhyay, B. S. Manjunath, Shivkumar Chandrasekaran
arXiv'2021 [Paper] -
Better Robustness by More Coverage: Adversarial and Mixup Data Augmentation for Robust Finetuning
Guillaume P. Archambault, Yongyi Mao, Hongyu Guo, Richong Zhang
ACL'2021 [Paper] -
Interpolated Adversarial Training: Achieving Robust Neural Networks without Sacrificing Too Much Accuracy
Alex Lamb, Vikas Verma, Kenji Kawaguchi, Alexander Matyasko, Savya Khosla, Juho Kannala, Yoshua Bengio
NN'2021 [Paper] -
Semi-supervised Semantics-guided Adversarial Training for Trajectory Prediction
Ruochen Jiao, Xiangguo Liu, Takami Sato, Qi Alfred Chen, Qi Zhu
ICCV'2023 [Paper] -
Mixup as directional adversarial training
Guillaume P. Archambault, Yongyi Mao, Hongyu Guo, Richong Zhang
NIPS'2019 [Paper] [Code] -
On the benefits of defining vicinal distributions in latent space
Puneet Mangla, Vedant Singh, Shreyas Jayant Havaldar, Vineeth N Balasubramanian
CVPRW'2021 [Paper]
-
Mix-up Self-Supervised Learning for Contrast-agnostic Applications
Yichen Zhang, Yifang Yin, Ying Zhang, Roger Zimmermann
ICDE'2022 [Paper] -
Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing
Aadarsh Sahoo, Rutav Shah, Rameswar Panda, Kate Saenko, Abir Das
NIPS'2021 [Paper] [Code] -
Virtual Mixup Training for Unsupervised Domain Adaptation
Xudong Mao, Yun Ma, Zhenguo Yang, Yangbin Chen, Qing Li
arXiv'2019 [Paper] [Code] -
Improve Unsupervised Domain Adaptation with Mixup Training
Shen Yan, Huan Song, Nanxiang Li, Lincan Zou, Liu Ren
arXiv'2020 [Paper] -
Adversarial Domain Adaptation with Domain Mixup
Minghao Xu, Jian Zhang, Bingbing Ni, Teng Li, Chengjie Wang, Qi Tian, Wenjun Zhang
AAAI'2020 [Paper] [Code] -
Dual Mixup Regularized Learning for Adversarial Domain Adaptation
Yuan Wu, Diana Inkpen, Ahmed El-Roby
ECCV'2020 [Paper] [Code] -
Select, Label, and Mix: Learning Discriminative Invariant Feature Representations for Partial Domain Adaptation
Aadarsh Sahoo, Rameswar Panda, Rogerio Feris, Kate Saenko, Abir Das
WACV'2023 [Paper] [Code] -
Spectral Adversarial MixUp for Few-Shot Unsupervised Domain Adaptation
Jiajin Zhang, Hanqing Chao, Amit Dhurandhar, Pin-Yu Chen, Ali Tajer, Yangyang Xu, Pingkun Yan
MICCAI'2023 [Paper] [Code]
-
MixACM: Mixup-Based Robustness Transfer via Distillation of Activated Channel Maps
Muhammad Awais, Fengwei Zhou, Chuanlong Xie, Jiawei Li, Sung-Ho Bae, Zhenguo Li
NIPS'2021 [Paper] -
MixSKD: Self-Knowledge Distillation from Mixup for Image Recognition
Chuanguang Yang, Zhulin An, Helong Zhou, Linhang Cai, Xiang Zhi, Jiwen Wu, Yongjun Xu, Qian Zhang
ECCV'2022 [Paper] -
Understanding the Role of Mixup in Knowledge Distillation: An Empirical Study
Chuanguang Yang, Zhulin An, Helong Zhou, Linhang Cai, Xiang Zhi, Jiwen Wu, Yongjun Xu, Qian Zhang
WACV'2023 [Paper]
-
MixGen: A New Multi-Modal Data Augmentation
Xiaoshuai Hao, Yi Zhu, Srikar Appalaraju, Aston Zhang, Wanqian Zhang, Bo Li, Mu Li
arXiv'2023 [Paper] [Code] -
VLMixer: Unpaired Vision-Language Pre-training via Cross-Modal CutMix
Teng Wang, Wenhao Jiang, Zhichao Lu, Feng Zheng, Ran Cheng, Chengguo Yin, Ping Luo
ICML'2022 [Paper] -
Geodesic Multi-Modal Mixup for Robust Fine-Tuning
Changdae Oh, Junhyuk So, Hoyoon Byun, YongTaek Lim, Minchul Shin, Jong-June Jeon, Kyungwoo Song
NIPS'2023 [Paper] [Code] -
PowMix: A Versatile Regularizer for Multimodal Sentiment Analysis
Efthymios Georgiou, Yannis Avrithis, Alexandros Potamianos
arXiv'2023 [Paper] -
Enhance image classification via inter-class image mixup with diffusion model
Efthymios Georgiou, Yannis Avrithis, Alexandros Potamianos
CVPR'2024 [Paper] [Code] -
Frequency-Enhanced Data Augmentation for Vision-and-Language Navigation
Keji He, Chenyang Si, Zhihe Lu, Yan Huang, Liang Wang, Xinchao Wang
NIPS'2023 [Paper] [Code]
-
Augmenting Data with Mixup for Sentence Classification: An Empirical Study
Hongyu Guo, Yongyi Mao, Richong Zhang
arXiv'2019 [Paper] [Code] -
Adversarial Mixing Policy for Relaxing Locally Linear Constraints in Mixup
Guang Liu, Yuzhao Mao, Hailong Huang, Weiguo Gao, Xuan Li
EMNLP'2021 [Paper] -
SeqMix: Augmenting Active Sequence Labeling via Sequence Mixup
Hongyu Guo, Yongyi Mao, Richong Zhang
EMNLP'2020 [Paper] [Code] -
Mixup-Transformer: Dynamic Data Augmentation for NLP Tasks
Lichao Sun, Congying Xia, Wenpeng Yin, Tingting Liang, Philip S. Yu, Lifang He
COLING'2020 [Paper] -
Calibrated Language Model Fine-Tuning for In- and Out-of-Distribution Data
Lingkai Kong, Haoming Jiang, Yuchen Zhuang, Jie Lyu, Tuo Zhao, Chao Zhang
EMNLP'2020 [Paper] [Code] -
Augmenting NLP Models using Latent Feature Interpolations
Amit Jindal, Arijit Ghosh Chowdhury, Aniket Didolkar, Di Jin, Ramit Sawhney, Rajiv Ratn Shah
COLING'2020 [Paper] -
MixText: Linguistically-informed Interpolation of Hidden Space for Semi-Supervised Text Classification
Jiaao Chen, Zichao Yang, Diyi Yang
ACL'2020 [Paper] [Code] -
Sequence-Level Mixed Sample Data Augmentation
Jiaao Chen, Zichao Yang, Diyi Yang
EMNLP'2020 [Paper] [Code] -
AdvAug: Robust Adversarial Augmentation for Neural Machine Translation
Yong Cheng, Lu Jiang, Wolfgang Macherey, Jacob Eisenstein
ACL'2020 [Paper] [Code] -
Local Additivity Based Data Augmentation for Semi-supervised NER
Jiaao Chen, Zhenghui Wang, Ran Tian, Zichao Yang, Diyi Yang
ACL'2020 [Paper] [Code] -
Mixup Decoding for Diverse Machine Translation
Jicheng Li, Pengzhi Gao, Xuanfu Wu, Yang Feng, Zhongjun He, Hua Wu, Haifeng Wang
EMNLP'2021 [Paper] -
TreeMix: Compositional Constituency-based Data Augmentation for Natural Language Understanding
Le Zhang, Zichao Yang, Diyi Yang
NAALC'2022 [Paper] [Code] -
STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation
Qingkai Fang, Rong Ye, Lei Li, Yang Feng, Mingxuan Wang
ACL'2022 [Paper] [Code] -
AdMix: A Mixed Sample Data Augmentation Method for Neural Machine Translation
Chang Jin, Shigui Qiu, Nini Xiao, Hao Jia
IJCAI'2022 [Paper] -
Enhancing Cross-lingual Transfer by Manifold Mixup
Huiyun Yang, Huadong Chen, Hao Zhou, Lei Li
ICLR'2022 [Paper] [Code] -
Multilingual Mix: Example Interpolation Improves Multilingual Neural Machine Translation
Yong Cheng, Ankur Bapna, Orhan Firat, Yuan Cao, Pidong Wang, Wolfgang Macherey
ACL'2022 [Paper]
-
Node Augmentation Methods for Graph Neural Network based Object Classification
Yifan Xue; Yixuan Liao; Xiaoxin Chen; Jingwei Zhao
CDS'2021 [Paper] -
Mixup for Node and Graph Classification
Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, Bryan Hooi
WWW'2021 [Paper] [Code] -
Graph Mixed Random Network Based on PageRank
Qianli Ma, Zheng Fan, Chenzhi Wang, Hongye Tan
Symmetry'2022 [Paper] -
GraphSMOTE: Imbalanced Node Classification on Graphs with Graph Neural Networks
Tianxiang Zhao, Xiang Zhang, Suhang Wang
WSDM'2021 [Paper] -
GraphMix: Improved Training of GNNs for Semi-Supervised Learning
Vikas Verma, Meng Qu, Kenji Kawaguchi, Alex Lamb, Yoshua Bengio, Juho Kannala, Jian Tang
AAAI'2021 [Paper] [Code] -
GraphMixup: Improving Class-Imbalanced Node Classification on Graphs by Self-supervised Context Prediction
Lirong Wu, Haitao Lin, Zhangyang Gao, Cheng Tan, Stan.Z.Li
ECML-PKDD'2022 [Paper] [Code] -
Graph Transplant: Node Saliency-Guided Graph Mixup with Local Structure Preservation
Joonhyung Park, Hajin Shim, Eunho Yang
AAAI'2022 [Paper] [Code] -
G-Mixup: Graph Data Augmentation for Graph Classification
Xiaotian Han, Zhimeng Jiang, Ninghao Liu, Xia Hu
ICML'2022 [Paper] -
Fused Gromov-Wasserstein Graph Mixup for Graph-level Classifications
Xinyu Ma, Xu Chu, Yasha Wang, Yang Lin, Junfeng Zhao, Liantao Ma, Wenwu Zhu
NIPS'2023 [Paper] [code] -
iGraphMix: Input Graph Mixup Method for Node Classification
Jongwon Jeong, Hoyeop Lee, Hyui Geon Yoon, Beomyoung Lee, Junhee Heo, Geonsoo Kim, Kim Jin Seon
ICLR'2024 [Paper]
-
PointMixup: Augmentation for Point Clouds
Yunlu Chen, Vincent Tao Hu, Efstratios Gavves, Thomas Mensink, Pascal Mettes, Pengwan Yang, Cees G.M. Snoek
ECCV'2020 [Paper] [Code] -
PointCutMix: Regularization Strategy for Point Cloud Classification
Jinlai Zhang, Lyujie Chen, Bo Ouyang, Binbin Liu, Jihong Zhu, Yujing Chen, Yanmei Meng, Danfeng Wu
Neurocomputing'2022 [Paper] [Code] -
Regularization Strategy for Point Cloud via Rigidly Mixed Sample
Dogyoon Lee, Jaeha Lee, Junhyeop Lee, Hyeongmin Lee, Minhyeok Lee, Sungmin Woo, Sangyoun Lee
CVPR'2021 [Paper] [Code] -
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud
Jaeseok Choi, Yeji Song, Nojun Kwak
IROS'2021 [Paper] [Code] -
Point MixSwap: Attentional Point Cloud Mixing via Swapping Matched Structural Divisions
Ardian Umam, Cheng-Kun Yang, Yung-Yu Chuang, Jen-Hui Chuang, Yen-Yu Lin
ECCV'2022 [Paper] [Code]
-
Embedding Expansion: Augmentation in Embedding Space for Deep Metric Learning
Byungsoo Ko, Geonmo Gu
CVPR'2020 [Paper] [Code] -
SalfMix: A Novel Single Image-Based Data Augmentation Technique Using a Saliency Map
Jaehyeop Choi, Chaehyeon Lee, Donggyu Lee, Heechul Jung
Sensor'2021 [Paper] -
Octave Mix: Data Augmentation Using Frequency Decomposition for Activity Recognition
Tatsuhito Hasegawa
IEEE Access'2021 [Paper] -
Guided Interpolation for Adversarial Training
Chen Chen, Jingfeng Zhang, Xilie Xu, Tianlei Hu, Gang Niu, Gang Chen, Masashi Sugiyama
arXiv'2021 [Paper] -
Recall@k Surrogate Loss with Large Batches and Similarity Mixup
Yash Patel, Giorgos Tolias, Jiri Matas
CVPR'2022 [Paper] [Code] -
Contrastive-mixup Learning for Improved Speaker Verification
Xin Zhang, Minho Jin, Roger Cheng, Ruirui Li, Eunjung Han, Andreas Stolcke
ICASSP'2022 [Paper] -
Noisy Feature Mixup
Soon Hoe Lim, N. Benjamin Erichson, Francisco Utrera, Winnie Xu, Michael W. Mahoney
ICLR'2022 [Paper] [Code] -
It Takes Two to Tango: Mixup for Deep Metric Learning
Shashanka Venkataramanan, Bill Psomas, Ewa Kijak, Laurent Amsaleg, Konstantinos Karantzalos, Yannis Avrithis
ICLR'2022 [Paper] [Code] -
Representational Continuity for Unsupervised Continual Learning
Divyam Madaan, Jaehong Yoon, Yuanchun Li, Yunxin Liu, Sung Ju Hwang
ICLR'2022 [Paper] [Code] -
Expeditious Saliency-guided Mix-up through Random Gradient Thresholding
Remy Sun, Clement Masson, Gilles Henaff, Nicolas Thome, Matthieu Cord.
ICPR'2022 [Paper] -
Guarding Barlow Twins Against Overfitting with Mixed Samples
Wele Gedara Chaminda Bandara, Celso M. De Melo, Vishal M. Patel
arXiv'2023 [Paper] [Code] -
Infinite Class Mixup
Thomas Mensink, Pascal Mettes
arXiv'2023 [Paper] -
Semantic Equivariant Mixup
Zongbo Han, Tianchi Xie, Bingzhe Wu, Qinghua Hu, Changqing Zhang
arXiv'2023 [Paper] -
G-Mix: A Generalized Mixup Learning Framework Towards Flat Minima
Xingyu Li, Bo Tang
arXiv'2023 [Paper] -
Inter-Instance Similarity Modeling for Contrastive Learning
Chengchao Shen, Dawei Liu, Hao Tang, Zhe Qu, Jianxin Wang
arXiv'2023 [Paper] [Code] -
Single-channel speech enhancement using learnable loss mixup
Oscar Chang, Dung N. Tran, Kazuhito Koishida
arXiv'2023 [Paper] -
Selective Volume Mixup for Video Action Recognition
Yi Tan, Zhaofan Qiu, Yanbin Hao, Ting Yao, Xiangnan He, Tao Mei
arXiv'2023 [Paper] -
Rethinking Data Augmentation for Image Super-resolution: A Comprehensive Analysis and a New Strategy
Jaejun Yoo, Namhyuk Ahn, Kyung-Ah Sohn
CVPR'2020 & IJCV'2024 [Paper] [Code] -
DNABERT-S: Learning Species-Aware DNA Embedding with Genome Foundation Models
Zhihan Zhou, Weimin Wu, Harrison Ho, Jiayi Wang, Lizhen Shi, Ramana V Davuluri, Zhong Wang, Han Liu
arXiv'2024 [Paper] [Code] -
ContextMix: A context-aware data augmentation method for industrial visual inspection systems
Hyungmin Kim, Donghun Kim, Pyunghwan Ahn, Sungho Suh, Hansang Cho, Junmo Kim
EAAI'2024 [Paper] -
Robust Image Denoising through Adversarial Frequency Mixup
Donghun Ryou, Inju Ha, Hyewon Yoo, Dongwan Kim, Bohyung Han
CVPR'2024 [Paper] [Code]
-
Understanding Mixup Training Methods
Daojun Liang, Feng Yang, Tian Zhang, Peter Yang
NIPS'2019 [Paper] -
MixUp as Locally Linear Out-Of-Manifold Regularization
Hongyu Guo, Yongyi Mao, Richong Zhang
AAAI'2019 [Paper] -
MixUp as Directional Adversarial Training
Chanwoo Park, Sangdoo Yun, Sanghyuk Chun
NIPS'2019 [Paper] -
On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep Neural Networks
Sunil Thulasidasan, Gopinath Chennupati, Jeff Bilmes, Tanmoy Bhattacharya, Sarah Michalak
NIPS'2019 [Paper] [Code] -
On Mixup Regularization
Luigi Carratino, Moustapha Cissé, Rodolphe Jenatton, Jean-Philippe Vert
arXiv'2020 [Paper] -
Mixup Training as the Complexity Reduction
Masanari Kimura
arXiv'2021 [Paper] -
How Does Mixup Help With Robustness and Generalization
Linjun Zhang, Zhun Deng, Kenji Kawaguchi, Amirata Ghorbani, James Zou
ICLR'2021 [Paper] -
Mixup Without Hesitation
Hao Yu, Huanyu Wang, Jianxin Wu
ICIG'2022 [Paper] [Code] -
RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and Out Distribution Robustness
Francesco Pinto, Harry Yang, Ser-Nam Lim, Philip H.S. Torr, Puneet K. Dokania
NIPS'2022 [Paper] [Code] -
A Unified Analysis of Mixed Sample Data Augmentation: A Loss Function Perspective
Chanwoo Park, Sangdoo Yun, Sanghyuk Chun
NIPS'2022 [Paper] [Code] -
Towards Understanding the Data Dependency of Mixup-style Training
Muthu Chidambaram, Xiang Wang, Yuzheng Hu, Chenwei Wu, Rong Ge
ICLR'2022 [Paper] [Code] -
When and How Mixup Improves Calibration
Linjun Zhang, Zhun Deng, Kenji Kawaguchi, James Zou
ICML'2022 [Paper] -
Provable Benefit of Mixup for Finding Optimal Decision Boundaries
Junsoo Oh, Chulhee Yun
ICML'2023 [Paper] -
On the Pitfall of Mixup for Uncertainty Calibration
Deng-Bao Wang, Lanqing Li, Peilin Zhao, Pheng-Ann Heng, Min-Ling Zhang
CVPR'2023 [Paper] -
Understanding the Role of Mixup in Knowledge Distillation: An Empirical Study
Hongjun Choi, Eun Som Jeon, Ankita Shukla, Pavan Turaga
WACV'2023 [Paper] [Code] -
Over-Training with Mixup May Hurt Generalization
Zixuan Liu, Ziqiao Wang, Hongyu Guo, Yongyi Mao
ICLR'2023 [Paper] -
Analyzing Effects of Mixed Sample Data Augmentation on Model Interpretability
Soyoun Won, Sung-Ho Bae, Seong Tae Kim
arXiv'2023 [Paper] -
Selective Mixup Helps with Distribution Shifts, But Not (Only) because of Mixup
Damien Teney, Jindong Wang, Ehsan Abbasnejad
ICML'2024 [Paper] -
Pushing Boundaries: Mixup's Influence on Neural Collapse
Quinn Fisher, Haoming Meng, Vardan Papyan
ICLR'2024 [Paper]
-
A survey on Image Data Augmentation for Deep Learning
Connor Shorten and Taghi Khoshgoftaar
Journal of Big Data'2019 [Paper] -
An overview of mixing augmentation methods and augmentation strategies
Dominik Lewy and Jacek Ma ́ndziuk
Artificial Intelligence Review'2022 [Paper] -
Image Data Augmentation for Deep Learning: A Survey
Suorong Yang, Weikang Xiao, Mengcheng Zhang, Suhan Guo, Jian Zhao, Furao Shen
arXiv'2022 [Paper] -
A Survey of Mix-based Data Augmentation: Taxonomy, Methods, Applications, and Explainability
Chengtai Cao, Fan Zhou, Yurou Dai, Jianping Wang
arXiv'2022 [Paper] [Code] -
A Survey of Automated Data Augmentation for Image Classification: Learning to Compose, Mix, and Generate
Tsz-Him Cheung, Dit-Yan Yeung
IEEE TNNLS'2023 [Paper] -
Survey: Image Mixing and Deleting for Data Augmentation
Humza Naveed, Saeed Anwar, Munawar Hayat, Kashif Javed, Ajmal Mian
EAAI'2024 [Paper] -
A Survey on Mixup Augmentations and Beyond
Xin Jin, Hongyu Zhu, Siyuan Li, Zedong Wang, Zecheng Liu, Chang Yu, Huafeng Qin, Stan. Z. Li
arXiv'2024 [Paper]
- OpenMixup: A Comprehensive Mixup Benchmark for Visual Classification
Siyuan Li, Zedong Wang, Zicheng Liu, Di Wu, Cheng Tan, Weiyang Jin, Stan Z. Li
arXiv'2024 [Paper] [Code]
Mixup methods classification results on general datasets: CIFAR10 \ CIFAR100, TinyImageNet, and ImageNet-1K.
Method | Publish | CIFAR10 | CIFAR100 | CIFAR100 | CIFAR100 | CIFAR100 | CIFAR100 | Tiny-ImageNet | Tiny-ImageNet | ImageNet-1K | ImageNet-1K |
---|---|---|---|---|---|---|---|---|---|---|---|
R18 | R18 | RX50 | PreActR18 | WRN28-10 | WRN28-8 | R18 | RX50 | R18 | R50 | ||
MixUp | ICLR'2018 | 96.62(800) | 79.12(800) | 82.10(800) | 78.90(200) | 82.50(200) | 82.82(400) | 63.86(400) | 66.36(400) | 69.98(100) | 77.12(100) |
CutMix | ICCV'2019 | 96.68(800) | 78.17(800) | 78.32(800) | 76.80(1200) | 83.40(200) | 84.45(400) | 65.53(400) | 66.47(400) | 68.95(100) | 77.17(100) |
Manifold Mixup | ICML'2019 | 96.71(800) | 80.35(800) | 82.88(800) | 79.66(1200) | 81.96(1200) | 83.24(400) | 64.15(400) | 67.30(400) | 69.98(100) | 77.01(100) |
FMix | arXiv'2020 | 96.18(800) | 79.69(800) | 79.02(800) | 79.85(200) | 82.03(200) | 84.21(400) | 63.47(400) | 65.08(400) | 69.96(100) | 77.19(100) |
SmoothMix | CVPRW'2020 | 96.17(800) | 78.69(800) | 78.95(800) | - | - | 82.09(400) | - | - | - | 77.66(300) |
GridMix | PR'2020 | 96.56(800) | 78.72(800) | 78.90(800) | - | - | 84.24(400) | 64.79(400) | - | - | - |
ResizeMix | arXiv'2020 | 96.76(800) | 80.01(800) | 80.35(800) | - | 85.23(200) | 84.87(400) | 63.47(400) | 65.87(400) | 69.50(100) | 77.42(100) |
SaliencyMix | ICLR'2021 | 96.20(800) | 79.12(800) | 78.77(800) | 80.31(300) | 83.44(200) | 84.35(400) | 64.60(400) | 66.55(400) | 69.16(100) | 77.14(100) |
Attentive-CutMix | ICASSP'2020 | 96.63(800)n | 78.91(800) | 80.54(800) | - | - | 84.34(400) | 64.01(400) | 66.84(400) | - | 77.46(100) |
Saliency Grafting | AAAI'2022 | - | 80.83(800) | 83.10(800) | - | 84.68(300) | - | 64.84(600) | 67.83(400) | - | 77.65(100) |
PuzzleMix | ICML'2020 | 97.10(800) | 81.13(800) | 82.85(800) | 80.38(1200) | 84.05(200) | 85.02(400) | 65.81(400) | 67.83(400) | 70.12(100) | 77.54(100) |
Co-Mix | ICLR'2021 | 97.15(800) | 81.17(800) | 82.91(800) | 80.13(300) | - | 85.05(400) | 65.92(400) | 68.02(400) | - | 77.61(100) |
SuperMix | CVPR'2021 | - | - | - | 79.07(2000) | 93.60(600) | - | - | - | - | 77.60(600) |
RecursiveMix | NIPS'2022 | - | 81.36(200) | - | 80.58(2000) | - | - | - | - | - | 79.20(300) |
AutoMix | ECCV'2022 | 97.34(800) | 82.04(800) | 83.64(800) | - | - | 85.18(400) | 67.33(400) | 70.72(400) | 70.50(100) | 77.91(100) |
SAMix | arXiv'2021 | 97.50(800) | 82.30(800) | 84.42(800) | - | - | 85.50(400) | 68.89(400) | 72.18(400) | 70.83(100) | 78.06(100) |
AlignMixup | CVPR'2022 | - | - | - | 81.71(2000) | - | - | - | - | - | 78.00(100) |
MultiMix | NIPS'2023 | - | - | - | 81.82(2000) | - | - | - | - | - | 78.81(300) |
GuidedMixup | AAAI'2023 | - | - | - | 81.20(300) | 84.02(200) | - | - | - | - | 77.53(100) |
Catch-up Mix | AAAI'2023 | - | 82.10(400) | 83.56(400) | 82.24(2000) | - | - | 68.84(400) | - | - | 78.71(300) |
LGCOAMix | TIP'2024 | - | 82.34(800) | 84.11(800) | - | - | - | 68.27(400) | 73.08(400) | - | - |
AdAutoMix | ICLR'2024 | 97.55(800) | 82.32(800) | 84.42(800) | - | - | 85.32(400) | 69.19(400) | 72.89(400) | 70.86(100) | 78.04(100) |
Mixup methods classification results on ImageNet-1K dataset use ViT-based models: DeiT, Swin Transformer (Swin), Pyramid Vision Transformer (PVT), and ConvNext trained 300 epochs.
Method | Publish | ImageNet-1K | ImageNet-1K | ImageNet-1K | ImageNet-1K | ImageNet-1K | ImageNet-1K | ImageNet-1K |
---|---|---|---|---|---|---|---|---|
DieT-Tiny | DieT-Small | DieT-Base | Swin-Tiny | PVT-Tiny | PVT-Small | ConvNeXt-Tiny | ||
MixUp | ICLR'2018 | 74.69 | 77.72 | 78.98 | 81.01 | 75.24 | 78.69 | 80.88 |
CutMix | ICCV'2019 | 74.23 | 80.13 | 81.61 | 81.23 | 75.53 | 79.64 | 81.57 |
FMix | arXiv'2020 | 74.41 | 77.37 | - | 79.60 | 75.28 | 78.72 | 81.04 |
ResizeMix | arXiv'2020 | 74.79 | 78.61 | 80.89 | 81.36 | 76.05 | 79.55 | 81.64 |
SaliencyMix | ICLR'2021 | 74.17 | 79.88 | 80.72 | 81.37 | 75.71 | 79.69 | 81.33 |
Attentive-CutMix | ICASSP'2020 | 74.07 | 80.32 | 82.42 | 81.29 | 74.98 | 79.84 | 81.14 |
PuzzleMix | ICML'2020 | 73.85 | 80.45 | 81.63 | 81.47 | 75.48 | 79.70 | 81.48 |
AutoMix | ECCV'2022 | 75.52 | 80.78 | 82.18 | 81.80 | 76.38 | 80.64 | 82.28 |
SAMix | arXiv'2021 | 75.83 | 80.94 | 82.85 | 81.87 | 76.60 | 80.78 | 82.35 |
TransMix | CVPR'2022 | 74.56 | 80.68 | 82.51 | 81.80 | 75.50 | 80.50 | - |
TokenMix | ECCV'2022 | 75.31 | 80.80 | 82.90 | 81.60 | 75.60 | - | 73.97 |
TL-Align | ICCV'2023 | 73.20 | 80.60 | 82.30 | 81.40 | 75.50 | 80.40 | - |
SMMix | ICCV'2023 | 75.56 | 81.10 | 82.90 | 81.80 | 75.60 | 81.03 | - |
Mixpro | ICLR'2023 | 73.80 | 81.30 | 82.90 | 82.80 | 76.70 | 81.20 | - |
LUMix | ICASSP'2024 | - | 80.60 | 80.20 | 81.70 | - | - | 82.50 |
Summary of datasets for mixup methods tasks. Link to dataset websites is provided.
Dataset | Type | Label | Task | Total data number | Link |
---|---|---|---|---|---|
MINIST | Image | 10 | Classification | 70,000 | MINIST |
Fashion-MNIST | Image | 10 | Classification | 70,000 | Fashion-MINIST |
CIFAR10 | Image | 10 | Classification | 60,000 | CIFAR10 |
CIFAR100 | Image | 100 | Classification | 60,000 | CIFAR100 |
SVHN | Image | 10 | Classification | 630,420 | SVHN |
GTSRB | Image | 43 | Classification | 51,839 | GTSRB |
STL10 | Image | 10 | Classification | 113,000 | STL10 |
Tiny-ImageNet | Image | 200 | Classification | 100,000 | Tiny-ImageNet |
ImageNet-1K | Image | 1,000 | Classification | 1,431,167 | ImageNet-1K |
CUB-200-2011 | Image | 200 | Classification, Object Detection | 11,788 | CUB-200-2011 |
FGVC-Aircraft | Image | 102 | Classification | 10,200 | FGVC-Aircraft |
StanfordCars | Image | 196 | Classification | 16,185 | StanfordCars |
Oxford Flowers | Image | 102 | Classification | 8,189 | Oxford Flowers |
Caltech101 | Image | 101 | Classification | 9,000 | Caltech101 |
SOP | Image | 22,634 | Classification | 120,053 | SOP |
Food-101 | Image | 101 | Classification | 101,000 | Food-101 |
SUN397 | Image | 899 | Classification | 130,519 | SUN397 |
iNaturalist | Image | 5,089 | Classification | 675,170 | iNaturalist |
CIFAR-C | Image | 10,100 | Corruption Classification | 60,000 | CIFAR-C |
CIFAR-LT | Image | 10,100 | Long-tail Classification | 60,000 | CIFAR-LT |
ImageNet-1K-C | Image | 1,000 | Corruption Classification | 1,431,167 | ImageNet-1K-C |
ImageNet-A | Image | 200 | Classification | 7,500 | ImageNet-A |
Pascal VOC 102 | Image | 20 | Object Detection | 33,043 | Pascal VOC 102 |
MS-COCO Detection | Image | 91 | Object Detection | 164,062 | MS-COCO Detection |
DSprites | Image | 737,280*6 | Disentanglement | 737,280 | DSprites |
Place205 | Image | 205 | Recognition | 2,500,000 | Place205 |
Pascal Context | Image | 459 | Segmentation | 10,103 | Pascal Context |
ADE20K | Image | 3,169 | Segmentation | 25,210 | ADE20K |
Cityscapes | Image | 19 | Segmentation | 5,000 | Cityscapes |
StreetHazards | Image | 12 | Segmentation | 7,656 | StreetHazards |
PACS | Image | 7*4 | Domain Classification | 9,991 | PACS |
BRACS | Medical Image | 7 | Classification | 4,539 | BRACS |
BACH | Medical Image | 4 | Classification | 400 | BACH |
CAME-Lyon16 | Medical Image | 2 | Anomaly Detection | 360 | CAME-Lyon16 |
Chest X-Ray | Medical Image | 2 | Anomaly Detection | 5,856 | Chest X-Ray |
BCCD | Medical Image | 4,888 | Object Detection | 364 | BCCD |
TJU600 | Palm-Vein Image | 600 | Classification | 12,000 | TJU600 |
VERA220 | Palm-Vein Image | 220 | Classification | 2,200 | VERA220 |
CoNLL2003 | Text | 4 | Classification | 2,302 | CoNLL2003 |
20 Newsgroups | Text | 20 | OOD Detection | 20,000 | 20 Newsgroups |
WOS | Text | 134 | OOD Detection | 46,985 | WOS |
SST-2 | Text | 2 | Sentiment Understanding | 68,800 | SST-2 |
Cora | Graph | 7 | Node Classification | 2,708 | Cora |
Citeseer | Graph | 6 | Node Classification | 3,312 | Citeseer |
PubMed | Graph | 3 | Node Classification | 19,717 | PubMed |
BlogCatalog | Graph | 39 | Node Classification | 10,312 | BlogCatalog |
Google Commands | Speech | 30 | Classification | 65,000 | Google Commands |
VoxCeleb2 | Speech | 6,112 | Sound Classification | 1,000,000+ | VoxCeleb2 |
VCTK | Speech | 110 | Enhancement | 44,000 | VCTK |
ModelNet40 | 3D Point Cloud | 40 | Classification | 12,311 | ModelNet40 |
ScanObjectNN | 3D Point Cloud | 15 | Classification | 15,000 | ScanObjectNN |
ShapeNet | 3D Point Cloud | 16 | Recognition, Classification | 16,880 | ShapeNet |
KITTI360 | 3D Point Cloud | 80,256 | Detection, Segmentation | 14,999 | KITTI360 |
UCF101 | Video | 101 | Action Recognition | 13,320 | UCF101 |
Kinetics400 | Video | 400 | Action Recognition | 260,000 | Kinetics400 |
Airfoil | Tabular | - | Regression | 1,503 | Airfoil |
NO2 | Tabular | - | Regression | 500 | NO2 |
Exchange-Rate | Timeseries | - | Regression | 7,409 | Exchange-Rate |
Electricity | Timeseries | - | Regression | 26,113 | Electricity |
Feel free to send pull requests to add more links with the following Markdown format. Note that the abbreviation, the code link, and the figure link are optional attributes.
* **TITLE**<br>
*AUTHER*<br>
PUBLISH'YEAR [[Paper](link)] [[Code](link)]
<details close>
<summary>ABBREVIATION Framework</summary>
<p align="center"><img width="90%" src="link_to_image" /></p>
</details>
If you feel that our work has contributed to your research, please cite it, thanks. 🥰
@article{jin2024survey,
title={A Survey on Mixup Augmentations and Beyond},
author={Jin, Xin and Zhu, Hongyu and Li, Siyuan and Wang, Zedong and Liu, Zicheng and Yu, Chang and Qin, Huafeng and Li, Stan Z},
journal={arXiv preprint arXiv:2409.05202},
year={2024}
}
Current contributors include: Siyuan Li (@Lupin1998), Xin Jin (@JinXins), Zicheng Liu (@pone7), and Zedong Wang (@Jacky1128). We thank all contributors for Awesome-Mixup
!
This project is released under the Apache 2.0 license.
This repository is built using the OpenMixup library and Awesome README repository.
- OpenMixup: CAIRI Supervised, Semi- and Self-Supervised Visual Representation Learning Toolbox and Benchmark.
- Awesome-Mix: An awesome list of papers for
A Survey of Mix-based Data Augmentation: Taxonomy, Methods, Applications, and Explainability, we categorize them based on our proposed taxonomy
. - survery-image-mixing-and-deleting-for-data-augmentation: An awesome list of papers for
Survey: Image Mixing and Deleting for Data Augmentation
. - awesome-mixup: A collection of awesome papers about mixup.
- awesome-mixed-sample-data-augmentation: A collection of awesome things about mixed sample data augmentation.
- data-augmentation-review: List of useful data augmentation resources.
- Awesome-Mixup: An awesome list of papers for
A Survey on Mixup Augmentations and Beyond
.