Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

passive transformation #249

Merged
merged 40 commits into from
Jun 22, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
40 commits
Select commit Hold shift + click to select a range
420cbf5
first commit for moving torontonian sampling to new probabilities fun…
jakeffbulmer Jun 16, 2021
c0da935
fixed code, tests now pass
jakeffbulmer Jun 16, 2021
332f6f0
ran black on files
jakeffbulmer Jun 16, 2021
ed5f4f9
hbar passed to prob calcs
jakeffbulmer Jun 16, 2021
c8a32f6
code factor stuff
jakeffbulmer Jun 16, 2021
ce8aad4
try to fix failing test on the repo
jakeffbulmer Jun 16, 2021
3dc1dc7
remove forcing probs to be real
jakeffbulmer Jun 16, 2021
59cdfed
try to fix broken test
jakeffbulmer Jun 16, 2021
dfdaa89
remove seed from test
jakeffbulmer Jun 18, 2021
0d3d5bb
new linear transformation function and tests@
jakeffbulmer Jun 18, 2021
6501802
multimode squeezing function
jakeffbulmer Jun 18, 2021
4c6a9dc
run black on symplectic
jakeffbulmer Jun 18, 2021
6bf97a5
update changelog
jakeffbulmer Jun 18, 2021
c26b568
links in changelog
jakeffbulmer Jun 18, 2021
1e81ea3
try to make code factor happy
jakeffbulmer Jun 18, 2021
9361828
Merge branch 'master' into lin_transf
jakeffbulmer Jun 18, 2021
bebf17f
expand passive transformation added
jakeffbulmer Jun 18, 2021
49428b1
Merge branch 'lin_transf' of https://github.com/jakeffbulmer/thewalru…
jakeffbulmer Jun 18, 2021
25f10ee
try to make code factor happy again
jakeffbulmer Jun 18, 2021
0e5dc8f
trailing whitespace
jakeffbulmer Jun 18, 2021
75df8d8
test for not specifying phi in squeezing
jakeffbulmer Jun 18, 2021
2d7b008
Update .github/CHANGELOG.md
jakeffbulmer Jun 19, 2021
6800928
add docstring sentence to say squeezing can now be multimode
jakeffbulmer Jun 19, 2021
0c68e7c
Merge branch 'lin_transf' of https://github.com/jakeffbulmer/thewalru…
jakeffbulmer Jun 19, 2021
e289c26
fixed expand_passive docstring
jakeffbulmer Jun 21, 2021
e6c4b78
Merge branch 'master' into lin_transf
nquesada Jun 22, 2021
68562d2
Update thewalrus/symplectic.py
jakeffbulmer Jun 22, 2021
f170a9b
Update thewalrus/symplectic.py
jakeffbulmer Jun 22, 2021
3d2f06f
Update thewalrus/symplectic.py
jakeffbulmer Jun 22, 2021
fb783dc
Update thewalrus/symplectic.py
jakeffbulmer Jun 22, 2021
125eec5
Update thewalrus/symplectic.py
jakeffbulmer Jun 22, 2021
07c3201
Update thewalrus/symplectic.py
jakeffbulmer Jun 22, 2021
1a023be
Update thewalrus/symplectic.py
jakeffbulmer Jun 22, 2021
d2b3faa
new test and autosummary
jakeffbulmer Jun 22, 2021
6f2c841
hbar test
jakeffbulmer Jun 22, 2021
5cb6ceb
Merge branch 'lin_transf' of https://github.com/jakeffbulmer/thewalru…
jakeffbulmer Jun 22, 2021
dd293aa
run black on symplectic.py
jakeffbulmer Jun 22, 2021
75f208e
_ for unused variable
jakeffbulmer Jun 22, 2021
048cfa1
Apply suggestions from code review
nquesada Jun 22, 2021
cf81781
Update thewalrus/symplectic.py
nquesada Jun 22, 2021
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 10 additions & 1 deletion .github/CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,16 @@

### New features


* ``symplectic.squeezing`` function is now generalized to multiple modes of single mode squeezing [#249](https://github.com/XanaduAI/thewalrus/pull/249)

* adds a function ``symplectic.passive_transformation`` which allows for Gaussian states to be transformed by arbitrary non-unitary, non-square linear optical transformations [#249](https://github.com/XanaduAI/thewalrus/pull/249)

* ``torontonian_sample_state`` now can sample displaced Gaussian states [#248](https://github.com/XanaduAI/thewalrus/pull/248)

* Adds the function `hafnian_banded` to calculate the hafnian of a banded matrix [#246](https://github.com/XanaduAI/thewalrus/pull/246)


### Improvements

* Speeds up the calculation of photon number variances/covariances [#224](https://github.com/XanaduAI/thewalrus/pull/224)
Expand All @@ -16,7 +24,8 @@

This release contains contributions from (in alphabetical order):

Timjan Kalajdzievski, Nicolas Quesada
Jake Bulmer, Timjan Kalajdzievski, Nicolas Quesada


---

Expand Down
99 changes: 87 additions & 12 deletions thewalrus/symplectic.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@
.. autosummary::
expand
expand_vector
expand_passive
reduced_state
is_symplectic
sympmat
Expand All @@ -45,6 +46,7 @@

.. autosummary::
two_mode_squeezing
squeezing
interferometer
loss
mean_photon_number
Expand Down Expand Up @@ -99,8 +101,33 @@ def expand_vector(alpha, mode, N, hbar=2.0):
return r


def expand_passive(T, modes, N):
jakeffbulmer marked this conversation as resolved.
Show resolved Hide resolved
r"""Returns the expanded linear optical transformation
acting on specified modes, with identity acting on all other modes

Args:
T (array): square :math:`M \times M` matrix of linear optical transformation
modes (array): the :math:`M` modes of the transformation
N (int): number of modes in the new expanded transformation

Returns:
array: :math:`N \times N` array of expanded passive transformation
"""

if T.shape[0] != T.shape[1]:
raise ValueError("The input matrix is not square")

if len(modes) != T.shape[0]:
raise ValueError("length of modes must match the shape of T")

T_expand = np.eye(N, dtype=T.dtype)
T_expand[np.ix_(modes, modes)] = T

return T_expand


def reduced_state(mu, cov, modes):
r""" Returns the vector of means and the covariance matrix of the specified modes.
r"""Returns the vector of means and the covariance matrix of the specified modes.

Args:
modes (int of Sequence[int]): indices of the requested modes
Expand Down Expand Up @@ -146,22 +173,40 @@ def vacuum_state(modes, hbar=2.0, dtype=np.float64):
return state


def squeezing(r, phi, dtype=np.float64):
r"""Squeezing. In fock space this corresponds to \exp(\tfrac{1}{2}r e^{i \phi} (a^2 - a^{\dagger 2}) ).
def squeezing(r, phi=None, dtype=np.float64):
r"""Squeezing. In fock space this corresponds to:

.. math::

\exp(\tfrac{1}{2}r e^{i \phi} (a^2 - a^{\dagger 2}) ).


By passing an array of squeezing parameters and phases, it applies a tensor product of squeezing operations.

Args:
r (float): squeezing magnitude
phi (float): rotation parameter
dtype (numpy.dtype): datatype to represent the Symplectic matrix
r (Union[array, float]): squeezing magnitude
phi (Union[array, float]): rotation parameter. If ``None``, then the function uses zeros of the same shape as ``r``.
dtype (numpy.dtype): datatype to represent the Symplectic matrix. Defaults to ``numpy.float64``.
Returns:
array: symplectic transformation matrix
"""
# pylint: disable=assignment-from-no-return
cp = np.cos(phi, dtype=dtype)
sp = np.sin(phi, dtype=dtype)
ch = np.cosh(r, dtype=dtype)
sh = np.sinh(r, dtype=dtype)
S = np.array([[ch - cp * sh, -sp * sh], [-sp * sh, ch + cp * sh]])

r = np.atleast_1d(r)

if phi is None:
phi = np.zeros_like(r)

phi = np.atleast_1d(phi)

M = len(r)
S = np.identity(2 * M, dtype=dtype)

for i, (r_i, phi_i) in enumerate(zip(r, phi)):
S[i, i] = np.cosh(r_i) - np.sinh(r_i) * np.cos(phi_i)
S[i, i + M] = -np.sinh(r_i) * np.sin(phi_i)
S[i + M, i] = -np.sinh(r_i) * np.sin(phi_i)
S[i + M, i + M] = np.cosh(r_i) + np.sinh(r_i) * np.cos(phi_i)

return S

Expand Down Expand Up @@ -211,6 +256,32 @@ def interferometer(U):
return S


def passive_transformation(mu, cov, T, hbar=2):
r"""Perform a covariance matrix transformation for an arbitrary linear optical channel
on an :math:`N` modes state mapping it to a to an :math:`M` modes state.

Args:
mu (array): :math:`2N`-length means vector
cov (array): :math:`2N \times 2N` covariance matrix
T (array): :math:`M \times N` linear optical transformation

Keyword Args:
hbar (float)=2: the value to use for hbar

Returns:
array: :math:`2M`-length transformed means vector
array :math:`2M \times 2M` tranformed covariance matrix
"""

P = interferometer(T)
L = (hbar / 2) * (np.eye(P.shape[0]) - P @ P.T)

cov = P @ cov @ P.T + L
mu = P @ mu

return mu, cov


# pylint: disable=too-many-arguments
def loss(mu, cov, T, mode, nbar=0, hbar=2):
r"""Loss channel acting on a Gaussian state.
Expand Down Expand Up @@ -241,6 +312,7 @@ def loss(mu, cov, T, mode, nbar=0, hbar=2):

return mu_res, cov_res


### Comment: This function strongly overlaps with `quantum.photon_number_mean`
### Wonder if it is worth removing it.
def mean_photon_number(mu, cov, hbar=2):
Expand Down Expand Up @@ -314,7 +386,7 @@ def sympmat(N, dtype=np.float64):


def is_symplectic(S, rtol=1e-05, atol=1e-08):
r""" Checks if matrix S is a symplectic matrix
r"""Checks if matrix S is a symplectic matrix

Args:
S (array): a square matrix
Expand All @@ -332,6 +404,7 @@ def is_symplectic(S, rtol=1e-05, atol=1e-08):

return np.allclose(S.T @ Omega @ S, Omega, rtol=rtol, atol=atol)


def autonne(A, rtol=1e-05, atol=1e-08, svd_order=True):
r"""Autonne-Takagi decomposition of a complex symmetric (not Hermitian!) matrix.

Expand Down Expand Up @@ -364,6 +437,7 @@ def autonne(A, rtol=1e-05, atol=1e-08, svd_order=True):
return (vals[n : 2 * n])[::-1], U[:, ::-1]
return vals[n : 2 * n], U


def xxpp_to_xpxp(S):
"""Permutes the entries of the input from xxpp ordering to xpxp ordering.

Expand All @@ -389,6 +463,7 @@ def xxpp_to_xpxp(S):

return S[ind]


def xpxp_to_xxpp(S):
"""Permutes the entries of the input from xpxp ordering to xxpp ordering.

Expand Down
156 changes: 156 additions & 0 deletions thewalrus/tests/test_symplectic.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
from scipy.linalg import block_diag

from thewalrus import symplectic
from thewalrus.quantum import is_valid_cov


# pylint: disable=too-few-public-methods
Expand Down Expand Up @@ -59,6 +60,53 @@ def test_squeezing(self, tol):
expected = rotation @ np.diag(np.exp([-2*r, 2*r])) @ rotation.T
assert np.allclose(out, expected, atol=tol, rtol=0)

def test_squeezing_no_phi(self, tol):
"""Test the squeezing symplectic transform without specifying phi"""
r = 0.543
phi = 0.
S = symplectic.squeezing(r)
out = S @ S.T

# apply to an identity covariance matrix
rotation = np.array([[np.cos(phi/2), -np.sin(phi/2)], [np.sin(phi/2), np.cos(phi/2)]])
expected = rotation @ np.diag(np.exp([-2*r, 2*r])) @ rotation.T
assert np.allclose(out, expected, atol=tol, rtol=0)

def test_squeezing_no_phi_array(self, tol):
"""Test multimode squeezing symplectic transform without specifying phi"""
r = np.random.randn(6)
phi = np.zeros_like(r)

S = symplectic.squeezing(r)
S_phi = symplectic.squeezing(r, phi)

assert np.allclose(S, S_phi, atol=tol, rtol=0)

def test_symplectic_multimode(self, tol):
"""Test multimode version gives symplectic matrix"""
r = [0.543] * 4
phi = [0.123] * 4
S = symplectic.squeezing(r, phi)

# the symplectic matrix
O = symplectic.sympmat(4)

assert np.allclose(S @ O @ S.T, O, atol=tol, rtol=0)
jakeffbulmer marked this conversation as resolved.
Show resolved Hide resolved

def test_dtype(self, tol):
"""Test multimode version gives symplectic matrix"""
r = [0.543] * 4
phi = [0.123] * 4
S = symplectic.squeezing(r, phi)

S32_bit = symplectic.squeezing(r, phi, dtype=np.float32)

# the symplectic matrix
O = symplectic.sympmat(4)

assert np.allclose(S32_bit @ O @ S32_bit.T, O, atol=tol, rtol=0)
assert np.allclose(S, S32_bit, atol=tol, rtol=0)


class TestTwoModeSqueezing:
"""Tests for the TMS symplectic"""
Expand Down Expand Up @@ -176,6 +224,90 @@ def test_rotation(self, tol):
np.allclose(S, expected, atol=tol, rtol=0)


class TestPassiveTransformation:
""" tests for linear transformation """
def test_transformation(self, tol):
"""Test that an transformation returns the correct state"""

M = 4
cov = np.arange(4 * M ** 2, dtype=np.float64).reshape((2*M, 2*M))
mu = np.arange(2 * M, dtype=np.float64)

T = np.sqrt(0.9) * M ** (-0.5) * np.ones((6,M), dtype=np.float64)

mu_out, cov_out = symplectic.passive_transformation(mu, cov, T)
# fmt:off
expected_mu = np.array([ 2.84604989, 2.84604989, 2.84604989, 2.84604989, 2.84604989,
2.84604989, 10.43551628, 10.43551628, 10.43551628, 10.43551628,
10.43551628, 10.43551628])
expected_cov = np.array([
[ 48.7, 47.7, 47.7, 47.7, 47.7, 47.7, 63. , 63. , 63. , 63. , 63. , 63. ],
[ 47.7, 48.7, 47.7, 47.7, 47.7, 47.7, 63. , 63. , 63. , 63. , 63. , 63. ],
[ 47.7, 47.7, 48.7, 47.7, 47.7, 47.7, 63. , 63. , 63. , 63. , 63. , 63. ],
[ 47.7, 47.7, 47.7, 48.7, 47.7, 47.7, 63. , 63. , 63. , 63. , 63. , 63. ],
[ 47.7, 47.7, 47.7, 47.7, 48.7, 47.7, 63. , 63. , 63. , 63. , 63. , 63. ],
[ 47.7, 47.7, 47.7, 47.7, 47.7, 48.7, 63. , 63. , 63. , 63. , 63. , 63. ],
[163.8, 163.8, 163.8, 163.8, 163.8, 163.8, 178.3, 177.3, 177.3, 177.3, 177.3, 177.3],
[163.8, 163.8, 163.8, 163.8, 163.8, 163.8, 177.3, 178.3, 177.3, 177.3, 177.3, 177.3],
[163.8, 163.8, 163.8, 163.8, 163.8, 163.8, 177.3, 177.3, 178.3, 177.3, 177.3, 177.3],
[163.8, 163.8, 163.8, 163.8, 163.8, 163.8, 177.3, 177.3, 177.3, 178.3, 177.3, 177.3],
[163.8, 163.8, 163.8, 163.8, 163.8, 163.8, 177.3, 177.3, 177.3, 177.3, 178.3, 177.3],
[163.8, 163.8, 163.8, 163.8, 163.8, 163.8, 177.3, 177.3, 177.3, 177.3, 177.3, 178.3]])
# fmt:on

assert np.allclose(mu_out, expected_mu, atol=tol, rtol=0)
assert np.allclose(cov_out, expected_cov, atol=tol, rtol=0)

@pytest.mark.parametrize("M", range(1,10))
def test_valid_cov(self, M, tol):
"""test that the output is a valid covariance matrix, even when not square"""
a = np.arange(4 * M ** 2, dtype=np.float64).reshape((2*M, 2*M))
cov = a @ a.T + np.eye(2*M)
mu = np.arange(2 * M, dtype=np.float64)

T = np.sqrt(0.9) * M ** (-0.5) * np.ones((6,M), dtype=np.float64)

mu_out, cov_out = symplectic.passive_transformation(mu, cov, T)

assert cov_out.shape == (12, 12)
assert len(mu_out) == 12
assert is_valid_cov(cov_out, atol=tol, rtol=0)

@pytest.mark.parametrize("M", range(1, 6))
def test_unitary(self, M, tol):
"""
test that the outputs agree with the interferometer class when
transformation is unitary
"""
a = np.arange(4 * M ** 2, dtype=np.float64).reshape((2 * M, 2 * M))
cov = a @ a.T + np.eye(2 * M)
mu = np.arange(2 * M, dtype=np.float64)

U = M ** (-0.5) * np.fft.fft(np.eye(M))
jakeffbulmer marked this conversation as resolved.
Show resolved Hide resolved
S_U = symplectic.interferometer(U)
cov_U = S_U @ cov @ S_U.T
mu_U = S_U @ mu

mu_T, cov_T = symplectic.passive_transformation(mu, cov, U)

assert np.allclose(mu_U, mu_T, atol=tol, rtol=0)
assert np.allclose(cov_U, cov_T, atol=tol, rtol=0)

jakeffbulmer marked this conversation as resolved.
Show resolved Hide resolved
@pytest.mark.parametrize("hbar", [1,2, 1.05e-34])
def test_hbar(self, hbar, tol):
"""test that the output is a valid covariance matrix, even when not square"""

M = 4
a = np.arange(4 * M ** 2, dtype=np.float64).reshape((2*M, 2*M))
cov = a @ a.T + np.eye(2*M)
mu = np.arange(2 * M, dtype=np.float64)

T = np.sqrt(0.9) * M ** (-0.5) * np.ones((6,M), dtype=np.float64)

_, cov_out = symplectic.passive_transformation(mu, cov, T, hbar=hbar)

assert is_valid_cov(cov_out, hbar=hbar, atol=tol, rtol=0)

class TestReducedState:
"""Tests for the reduced state function"""

Expand Down Expand Up @@ -465,6 +597,30 @@ def test_expand_one(self, hbar, tol):
expected[mode + N] = np.sqrt(2 * hbar) * alpha.imag
assert np.allclose(r, expected, atol=tol, rtol=0)

class TestExpandPassive:
"""Tests for expanding a displacement operation into a phase-space displacement vector"""

def test_expand_one(self, tol):
"""Test that a 1x1 matrix is expanded correctly"""
T = np.array([[0.5]])

T_expand = symplectic.expand_passive(T, [1], 3)

expected = np.array([[1,0,0],[0,0.5,0],[0,0,1]])

assert np.allclose(T_expand, expected, atol=tol, rtol=0)

def test_expend_not_square(self):
""" test that error is raised for non square input"""
with pytest.raises(ValueError, match="The input matrix is not square"):
symplectic.expand_passive(np.ones((3,2)), [0,1,2], 5)

def test_modes_length(self):
""" test that error is raised when length of modes array is incorrect"""
with pytest.raises(ValueError, match="length of modes must match the shape of T"):
symplectic.expand_passive(np.ones((3,3)), [0,1,2,3,4], 8)


class TestSymplecticExpansion:
"""Tests for the expanding a symplectic matrix"""

Expand Down