Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Document the Negative binomial gibbs sampler #9

Merged
merged 4 commits into from
Feb 16, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
92 changes: 84 additions & 8 deletions aemcmc/negative_binomial_horseshoe_gibbs.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
from typing import Callable

import aesara
import aesara.tensor as at
from aesara.ifelse import ifelse
Expand Down Expand Up @@ -32,8 +34,47 @@ def update_beta(rng, omega, lambda2tau2_inv, X, z):
)


# NOTE: invGamma(1, a) === 1 / Exp(a), where a is the scale/mean of the exponential
def horseshoe_step(srng, beta, sigma2, lambda2_inv, tau2_inv):
r"""Gibbs kernel to sample from the posterior distribution of a horsehoe prior.

This kernel generates samples from the posterior distribution of the local
and global shrinkage parameters of a horsehoe prior, respectively :math:`\lambda`
and :math:`\tau` in the following model:

.. math::

\begin{align*}
\beta_j &\sim \operatorname{Normal}(0, \lambda_j^2\;\tau^2\;\sigma^2)\\
\sigma^2 &\sim \sigma^{-2} \mathrm{d} \sigma\\
\lambda_j &\sim \operatorname{HalfCauchy}(0, 1)\\
\tau &\sim \operatorname{HalfCauchy}(0, 1)
\end{align*}

We use the following observations [1]_ to sample from the posterior
conditional probability of :math:`\tau^{-2}` and :math:`\lambda^{-2}`:

1. The half-Cauchy distribution can be intepreted as a mixture of inverse-gamma
distributions;
2. If :math:` Y \sim InverseGamma(1, a)`, :math:`Y \sim 1 / \operatorname{Exp}(a)`.

Parameters
----------
srng
The random number generating object to be used during sampling.
beta
Regression coefficients.
sigma2
Variance of the regression coefficients.
lambda2_inv
Square inverse of the local shrinkage parameters.
tau2_inv
Square inverse of the global shrinkage parameters.

References
----------
..[1] Makalic, Enes & Schmidt, Daniel. (2016). High-Dimensional Bayesian
Regularised Regression with the BayesReg Package.
"""
upsilon_inv = srng.exponential(1 + lambda2_inv)
zeta_inv = srng.exponential(1 + tau2_inv)

Expand All @@ -43,7 +84,7 @@ def horseshoe_step(srng, beta, sigma2, lambda2_inv, tau2_inv):
0.5 * (beta.shape[0] + 1),
zeta_inv + 0.5 * (beta2 * lambda2_inv_new).sum() / sigma2,
)
return lambda2_inv_new, tau2_inv_new, upsilon_inv, zeta_inv
return lambda2_inv_new, tau2_inv_new


def horseshoe_nbinom_gibbs(
Expand All @@ -55,12 +96,27 @@ def horseshoe_nbinom_gibbs(
local_shrinkage_init: TensorVariable,
global_shrinkage_init: TensorVariable,
n_samples: TensorVariable,
):
) -> Callable:
r"""
Compose a symbolic graph that describes the gibbs sampler of the negative
Build a symbolic graph that describes the gibbs sampler of the negative
binomial regression with a HorseShoe prior on the regression coefficients.

The implemenation follows the sampler desribed in [1].
The implementation follows the sampler described in [1]. It is designed to
sample efficiently from the following negative binomial regression model:

.. math::

\begin{align*}
y_i &\sim \operatorname{NegativeBinomial}\left(\pi_i, h\right)\\
h &\sim \pi_h(h) \mathrm{d}h\\
\pi_i &= \frac{\exp(\psi_i)}{1 + \exp(\psi_i)}\\
\psi_i &= x^T \beta\\
\beta_j &\sim \operatorname{Normal}(0, \lambda_j^2\;\tau^2\;\sigma^2)\\
\sigma^2 &\sim \sigma^{-2} \mathrm{d} \sigma\\
\lambda_j &\sim \operatorname{HalfCauchy}(0, 1)\\
\tau &\sim \operatorname{HalfCauchy}(0, 1)
\end{align*}


Parameters
----------
Expand Down Expand Up @@ -146,9 +202,9 @@ def horseshoe_nbinom_gibbs(
sigma2 = at.constant(1, "sigma2")

# set the initial value of the intercept term to a random uniform value.
beta0 = at.empty_like(tau2)
beta0.name = "intercept"
# TODO: Set the prior value of the intercept outside of the function
beta0 = srng.uniform(-10, 10)
beta0.name = "intercept"

def step_fn(
beta0: TensorVariable,
Expand All @@ -163,6 +219,26 @@ def step_fn(
"""
Complete one full update of the gibbs sampler and return the new state
of the posterior conditional parameters.

Parameters
----------
beta0: TensorVariable
The intercept coefficient of the regression model.
beta: Tensorvariable
Coefficients (other than intercept) of the regression model.
lambda2_inv
Square inverse of the local shrinkage parameter of the horseshoe prior.
tau2_inv
Square inverse of the global shrinkage parameters of the horseshoe prior.
sigma2
Variance of the regression coefficients.
X: TensorVariable
The covariate matrix.
y: TensorVariable
The observed count data.
h: TensorVariable
The "number of successes" parameter of the negative binomial disribution
used to model the data.
"""
xb = X @ beta
w = srng.gen(polyagamma, y + h, beta0 + xb)
Expand All @@ -174,7 +250,7 @@ def step_fn(

beta_new = update_beta(srng, w, lambda2_inv * tau2_inv, X, z - beta0_new)

lambda2_inv_new, tau2_inv_new, _, _ = horseshoe_step(
lambda2_inv_new, tau2_inv_new = horseshoe_step(
srng, beta_new, sigma2, lambda2_inv, tau2_inv
)

Expand Down