Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support timestamp/time and date json decoding #3835

Merged
merged 2 commits into from
Mar 10, 2023
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
191 changes: 187 additions & 4 deletions arrow-json/src/raw/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ use crate::raw::tape::{Tape, TapeDecoder, TapeElement};
use arrow_array::types::*;
use arrow_array::{downcast_integer, make_array, RecordBatch, RecordBatchReader};
use arrow_data::ArrayData;
use arrow_schema::{ArrowError, DataType, SchemaRef};
use arrow_schema::{ArrowError, DataType, SchemaRef, TimeUnit};
use std::io::BufRead;

mod boolean_array;
Expand Down Expand Up @@ -293,6 +293,16 @@ fn make_decoder(
data_type => (primitive_decoder, data_type),
DataType::Float32 => primitive_decoder!(Float32Type, data_type),
DataType::Float64 => primitive_decoder!(Float64Type, data_type),
DataType::Timestamp(TimeUnit::Second, _) => primitive_decoder!(TimestampSecondType, data_type),
DataType::Timestamp(TimeUnit::Millisecond, _) => primitive_decoder!(TimestampMillisecondType, data_type),
DataType::Timestamp(TimeUnit::Microsecond, _) => primitive_decoder!(TimestampMicrosecondType, data_type),
DataType::Timestamp(TimeUnit::Nanosecond, _) => primitive_decoder!(TimestampNanosecondType, data_type),
spebern marked this conversation as resolved.
Show resolved Hide resolved
DataType::Date32 => primitive_decoder!(Date32Type, data_type),
DataType::Date64 => primitive_decoder!(Date64Type, data_type),
DataType::Time32(TimeUnit::Second) => primitive_decoder!(Time32SecondType, data_type),
DataType::Time32(TimeUnit::Millisecond) => primitive_decoder!(Time32MillisecondType, data_type),
DataType::Time64(TimeUnit::Microsecond) => primitive_decoder!(Time64MicrosecondType, data_type),
DataType::Time64(TimeUnit::Nanosecond) => primitive_decoder!(Time64NanosecondType, data_type),
DataType::Decimal128(p, s) => Ok(Box::new(DecimalArrayDecoder::<Decimal128Type>::new(p, s))),
DataType::Decimal256(p, s) => Ok(Box::new(DecimalArrayDecoder::<Decimal256Type>::new(p, s))),
DataType::Boolean => Ok(Box::<BooleanArrayDecoder>::default()),
Expand Down Expand Up @@ -373,10 +383,10 @@ mod tests {
#[test]
fn test_basic() {
let buf = r#"
{"a": 1, "b": 2, "c": true}
{"a": 2E0, "b": 4, "c": false}
{"a": 1, "b": 2, "c": true, "d": 1}
{"a": 2E0, "b": 4, "c": false, "d": 2, "e": 254}

{"b": 6, "a": 2.0}
{"b": 6, "a": 2.0, "d": 45}
{"b": "5", "a": 2}
{"b": 4e0}
{"b": 7, "a": null}
Expand All @@ -386,6 +396,8 @@ mod tests {
Field::new("a", DataType::Int64, true),
Field::new("b", DataType::Int32, true),
Field::new("c", DataType::Boolean, true),
Field::new("d", DataType::Date32, true),
Field::new("e", DataType::Date64, true),
]));

let batches = do_read(buf, 1024, false, schema);
Expand All @@ -407,6 +419,18 @@ mod tests {
assert!(!col3.is_null(0));
assert!(!col3.value(1));
assert!(!col3.is_null(1));

let col4 = as_primitive_array::<Date32Type>(batches[0].column(3));
assert_eq!(col4.null_count(), 3);
assert!(col4.is_null(3));
assert_eq!(col4.values(), &[1, 2, 45, 0, 0, 0]);

let col5 = as_primitive_array::<Date64Type>(batches[0].column(4));
assert_eq!(col5.null_count(), 5);
assert!(col5.is_null(0));
assert!(col5.is_null(2));
assert!(col5.is_null(3));
assert_eq!(col5.values(), &[0, 254, 0, 0, 0, 0]);
}

#[test]
Expand Down Expand Up @@ -782,4 +806,163 @@ mod tests {
test_decimal::<Decimal128Type>(DataType::Decimal128(10, 2));
test_decimal::<Decimal256Type>(DataType::Decimal256(10, 2));
}

fn test_timestamp<T: ArrowTimestampType>() {
let buf = r#"
{"a": 1, "b": "2020-09-08T13:42:29.190855+00:00", "c": 38.30}
{"a": 2, "b": "2020-09-08T13:42:29.190855Z", "c": 123.456}

{"b": 1337, "b": "2020-09-08T13:42:29Z", "c": "1997-01-31T09:26:56.123"}
{"b": 40, "c": "2020-09-08T13:42:29.190855+00:00"}
{"b": 1234, "a": null, "c": "1997-01-31 09:26:56.123Z"}
{"c": "1997-01-31T14:26:56.123-05:00"}
"#;

let schema = Arc::new(Schema::new(vec![
Field::new("a", T::DATA_TYPE, true),
Field::new("b", T::DATA_TYPE, true),
Field::new("c", T::DATA_TYPE, true),
]));

let batches = do_read(buf, 1024, true, schema);
assert_eq!(batches.len(), 1);

let unit = match T::DATA_TYPE {
DataType::Timestamp(unit, _) => unit,
_ => unreachable!(),
};
let unit_in_nanos = match unit {
TimeUnit::Second => 1_000_000_000,
TimeUnit::Millisecond => 1_000_000,
TimeUnit::Microsecond => 1_000,
TimeUnit::Nanosecond => 1,
};

let col1 = as_primitive_array::<T>(batches[0].column(0));
assert_eq!(col1.null_count(), 4);
assert!(col1.is_null(2));
assert!(col1.is_null(3));
assert!(col1.is_null(4));
assert!(col1.is_null(5));
assert_eq!(col1.values(), &[1, 2, 0, 0, 0, 0].map(T::Native::usize_as));

let col2 = as_primitive_array::<T>(batches[0].column(1));
assert_eq!(col2.null_count(), 1);
assert!(col2.is_null(5));
assert_eq!(
col2.values(),
&[
1599572549190855000 / unit_in_nanos,
1599572549190855000 / unit_in_nanos,
1599572549000000000 / unit_in_nanos,
40,
1234,
0
]
.map(T::Native::usize_as)
);

let col3 = as_primitive_array::<T>(batches[0].column(2));
assert_eq!(col3.null_count(), 0);
assert_eq!(
col3.values(),
&[
38,
123,
854702816123000000 / unit_in_nanos,
1599572549190855000 / unit_in_nanos,
854702816123000000 / unit_in_nanos,
854738816123000000 / unit_in_nanos
]
.map(T::Native::usize_as)
);
}

#[test]
fn test_timestamps() {
test_timestamp::<TimestampSecondType>();
test_timestamp::<TimestampMillisecondType>();
test_timestamp::<TimestampMicrosecondType>();
test_timestamp::<TimestampNanosecondType>();
}

fn test_time<T: ArrowTemporalType>() {
let buf = r#"
{"a": 1, "b": "09:26:56.123 AM", "c": 38.30}
{"a": 2, "b": "23:59:59", "c": 123.456}

{"b": 1337, "b": "6:00 pm", "c": "09:26:56.123"}
{"b": 40, "c": "13:42:29.190855"}
{"b": 1234, "a": null, "c": "09:26:56.123"}
{"c": "14:26:56.123"}
"#;

let unit = match T::DATA_TYPE {
DataType::Time32(unit) | DataType::Time64(unit) => unit,
_ => unreachable!(),
};

let unit_in_nanos = match unit {
TimeUnit::Second => 1_000_000_000,
TimeUnit::Millisecond => 1_000_000,
TimeUnit::Microsecond => 1_000,
TimeUnit::Nanosecond => 1,
};

let schema = Arc::new(Schema::new(vec![
Field::new("a", T::DATA_TYPE, true),
Field::new("b", T::DATA_TYPE, true),
Field::new("c", T::DATA_TYPE, true),
]));

let batches = do_read(buf, 1024, true, schema);
assert_eq!(batches.len(), 1);

let col1 = as_primitive_array::<T>(batches[0].column(0));
assert_eq!(col1.null_count(), 4);
assert!(col1.is_null(2));
assert!(col1.is_null(3));
assert!(col1.is_null(4));
assert!(col1.is_null(5));
assert_eq!(col1.values(), &[1, 2, 0, 0, 0, 0].map(T::Native::usize_as));

let col2 = as_primitive_array::<T>(batches[0].column(1));
assert_eq!(col2.null_count(), 1);
assert!(col2.is_null(5));
assert_eq!(
col2.values(),
&[
34016123000000 / unit_in_nanos,
86399000000000 / unit_in_nanos,
64800000000000 / unit_in_nanos,
40,
1234,
0
]
.map(T::Native::usize_as)
);

let col3 = as_primitive_array::<T>(batches[0].column(2));
assert_eq!(col3.null_count(), 0);
assert_eq!(
col3.values(),
&[
38,
123,
34016123000000 / unit_in_nanos,
49349190855000 / unit_in_nanos,
34016123000000 / unit_in_nanos,
52016123000000 / unit_in_nanos
]
.map(T::Native::usize_as)
);
}

#[test]
fn test_times() {
test_time::<Time32MillisecondType>();
test_time::<Time32SecondType>();
test_time::<Time64MicrosecondType>();
test_time::<Time64NanosecondType>();
}
}