Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: Comet columnar shuffle should not be on top of another Comet shuffle operator #296

Merged
merged 2 commits into from
Apr 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -151,7 +151,8 @@ class CometSparkSessionExtensions
case s: ShuffleExchangeExec
if (!s.child.supportsColumnar || isCometPlan(
s.child)) && isCometColumnarShuffleEnabled(conf) &&
QueryPlanSerde.supportPartitioningTypes(s.child.output) =>
QueryPlanSerde.supportPartitioningTypes(s.child.output) &&
!isShuffleOperator(s.child) =>
logInfo("Comet extension enabled for JVM Columnar Shuffle")
CometShuffleExchangeExec(s, shuffleType = CometColumnarShuffle)
}
Expand Down Expand Up @@ -538,10 +539,13 @@ class CometSparkSessionExtensions
}

// Columnar shuffle for regular Spark operators (not Comet) and Comet operators
// (if configured)
// (if configured).
// If the child of ShuffleExchangeExec is also a ShuffleExchangeExec, we should not
// convert it to CometColumnarShuffle,
case s: ShuffleExchangeExec
if isCometShuffleEnabled(conf) && isCometColumnarShuffleEnabled(conf) &&
QueryPlanSerde.supportPartitioningTypes(s.child.output) =>
QueryPlanSerde.supportPartitioningTypes(s.child.output) &&
!isShuffleOperator(s.child) =>
logInfo("Comet extension enabled for JVM Columnar Shuffle")

val newOp = QueryPlanSerde.operator2Proto(s)
Expand Down Expand Up @@ -627,6 +631,18 @@ class CometSparkSessionExtensions
case s: ShuffleQueryStageExec => findPartialAgg(s.plan)
}.flatten
}

/**
* Returns true if a given spark plan is Comet shuffle operator.
*/
def isShuffleOperator(op: SparkPlan): Boolean = {
op match {
case op: ShuffleQueryStageExec if op.plan.isInstanceOf[CometShuffleExchangeExec] => true
case _: CometShuffleExchangeExec => true
case op: CometSinkPlaceHolder => isShuffleOperator(op.child)
case _ => false
}
}
}

// This rule is responsible for eliminating redundant transitions between row-based and
Expand Down
25 changes: 24 additions & 1 deletion spark/src/test/scala/org/apache/comet/exec/CometExecSuite.scala
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,8 @@ import org.apache.spark.sql.execution.{CollectLimitExec, ProjectExec, SQLExecuti
import org.apache.spark.sql.execution.exchange.BroadcastExchangeExec
import org.apache.spark.sql.execution.joins.{BroadcastNestedLoopJoinExec, CartesianProductExec, SortMergeJoinExec}
import org.apache.spark.sql.execution.window.WindowExec
import org.apache.spark.sql.functions.{col, date_add, expr, sum}
import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions.{col, date_add, expr, lead, sum}
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.internal.SQLConf.SESSION_LOCAL_TIMEZONE
import org.apache.spark.unsafe.types.UTF8String
Expand All @@ -60,6 +61,28 @@ class CometExecSuite extends CometTestBase {
}
}

test("Repeated shuffle exchange don't fail") {
assume(isSpark33Plus)
Seq("true", "false").foreach { aqeEnabled =>
withSQLConf(
SQLConf.ADAPTIVE_EXECUTION_ENABLED.key -> aqeEnabled,
// `REQUIRE_ALL_CLUSTER_KEYS_FOR_DISTRIBUTION` is a new config in Spark 3.3+.
"spark.sql.requireAllClusterKeysForDistribution" -> "true",
CometConf.COMET_COLUMNAR_SHUFFLE_ENABLED.key -> "true") {
val df =
Seq(("a", 1, 1), ("a", 2, 2), ("b", 1, 3), ("b", 1, 4)).toDF("key1", "key2", "value")
val windowSpec = Window.partitionBy("key1", "key2").orderBy("value")

val windowed = df
// repartition by subset of window partitionBy keys which satisfies ClusteredDistribution
.repartition($"key1")
.select(lead($"key1", 1).over(windowSpec), lead($"value", 1).over(windowSpec))

checkSparkAnswer(windowed)
}
}
}

test("try_sum should return null if overflow happens before merging") {
assume(isSpark33Plus, "try_sum is available in Spark 3.3+")
val longDf = Seq(Long.MaxValue, Long.MaxValue, 2).toDF("v")
Expand Down
Loading