Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[operator] Integrate matmul primitive from oneDNN in batch dot #20340

Merged
merged 5 commits into from
Jun 24, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions src/operator/nn/mkldnn/mkldnn_base-inl.h
Original file line number Diff line number Diff line change
Expand Up @@ -213,6 +213,7 @@ bool SupportMKLDNNSoftmax(const SoftmaxParam& param, const NDArray &input, const
bool SupportMKLDNNLogSoftmax(const SoftmaxParam& param, const NDArray &input,
const NDArray &output);
bool SupportMKLDNNTranspose(const TransposeParam& param, const NDArray &data);
bool SupportMKLDNNBatchDot(const std::vector<NDArray> &inputs, const NDArray &output);
} // namespace op

static int GetTypeSize(int dtype) {
Expand Down
65 changes: 65 additions & 0 deletions src/operator/nn/mkldnn/mkldnn_batch_dot-inl.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* \file mkldnn_batch_dot-inl.h
*/

#ifndef MXNET_OPERATOR_NN_MKLDNN_MKLDNN_BATCH_DOT_INL_H_
#define MXNET_OPERATOR_NN_MKLDNN_MKLDNN_BATCH_DOT_INL_H_

#if MXNET_USE_ONEDNN == 1

#include <numeric>
#include <utility>
#include <vector>
#include "../../tensor/dot-inl.h"
#include "./mkldnn_base-inl.h"
#include "./mkldnn_ops-inl.h"

namespace mxnet {
namespace op {

using batch_dot_fwd_t = mkldnn::matmul;
using batch_dot_fwd_pd_t = mkldnn::matmul::primitive_desc;

typedef ParamOpSign<DotParam> BatchDotSignature;

class MKLDNNBatchDotFwd {
public:
static MKLDNNBatchDotFwd &GetCached(const DotParam &param,
const std::vector<NDArray> &inputs,
const std::vector<NDArray> &outputs);

MKLDNNBatchDotFwd(const DotParam &param, const std::vector<NDArray> &inputs,
const std::vector<NDArray> &outputs);

void Execute(const std::vector<NDArray> &inputs,
const std::vector<OpReqType> &req,
const std::vector<NDArray> &outputs);

private:
std::shared_ptr<batch_dot_fwd_t> fwd;
std::shared_ptr<batch_dot_fwd_pd_t> fwd_pd;
};

} // namespace op
} // namespace mxnet
#endif // MXNET_USE_ONEDNN == 1
#endif // MXNET_OPERATOR_NN_MKLDNN_MKLDNN_BATCH_DOT_INL_H__
132 changes: 132 additions & 0 deletions src/operator/nn/mkldnn/mkldnn_batch_dot.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,132 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* \file mkldnn_batch_dot.cc
*/

#if MXNET_USE_ONEDNN == 1

#include "./mkldnn_batch_dot-inl.h"

namespace mxnet {
namespace op {

bool SupportMKLDNNBatchDot(const std::vector<NDArray> &inputs,
const NDArray &output) {
return inputs[0].shape().Size() != 0 && inputs[1].shape().Size() != 0 &&
output.shape().Size() != 0 &&
(inputs[0].dtype() == mshadow::kFloat32 ||
inputs[0].dtype() == mshadow::kBfloat16);
}

void MKLDNNBatchDotForward(const nnvm::NodeAttrs &attrs, const OpContext &ctx,
const std::vector<NDArray> &inputs,
const std::vector<OpReqType> &req,
const std::vector<NDArray> &outputs) {
const DotParam &param = nnvm::get<DotParam>(attrs.parsed);
MKLDNNBatchDotFwd &fwd = MKLDNNBatchDotFwd::GetCached(param, inputs, outputs);
fwd.Execute(inputs, req, outputs);
}

MKLDNNBatchDotFwd &MKLDNNBatchDotFwd::GetCached(
const DotParam &param, const std::vector<NDArray> &inputs,
const std::vector<NDArray> &outputs) {
using batch_dot_fwd_map =
std::unordered_map<BatchDotSignature, MKLDNNBatchDotFwd, OpHash>;
#if DMLC_CXX11_THREAD_LOCAL
static thread_local batch_dot_fwd_map fwds;
#else
static MX_THREAD_LOCAL batch_dot_fwd_map fwds;
#endif

BatchDotSignature key(param);
key.AddSign(inputs[0]);
key.AddSign(inputs[1]);
key.AddSign(outputs[0]);

auto it = fwds.find(key);
if (it == fwds.end()) {
const MKLDNNBatchDotFwd fwd(param, inputs, outputs);
it = AddToCache(&fwds, key, fwd);
}
return it->second;
}

MKLDNNBatchDotFwd::MKLDNNBatchDotFwd(const DotParam &param,
const std::vector<NDArray> &inputs,
const std::vector<NDArray> &outputs) {
auto shape = inputs[0].shape();
auto ndim = shape.ndim();
auto bigDim = shape[0];
for (size_t i = 1; i < ndim - 2; ++i) {
bigDim *= shape[i];
}

auto GetMemoryDesc = [&ndim, &bigDim](const NDArray &tensor,
const bool transpose) {
auto shape = tensor.shape();
if (transpose) {
return mkldnn::memory::desc(
mkldnn::memory::dims{bigDim, shape[ndim - 1], shape[ndim - 2]},
get_mkldnn_type(tensor.dtype()), mkldnn::memory::format_tag::acb);
} else {
return mkldnn::memory::desc(
mkldnn::memory::dims{bigDim, shape[ndim - 2], shape[ndim - 1]},
get_mkldnn_type(tensor.dtype()), mkldnn::memory::format_tag::any);
}
};

mkldnn::memory::desc data_md = GetMemoryDesc(inputs[0], param.transpose_a);
mkldnn::memory::desc weights_md = GetMemoryDesc(inputs[1], param.transpose_b);
mkldnn::memory::desc out_md({bigDim, data_md.dims()[1], weights_md.dims()[2]},
get_mkldnn_type(outputs[0].dtype()),
mkldnn::memory::format_tag::any);
mkldnn::matmul::desc fwd_desc(data_md, weights_md, out_md);
fwd_pd = std::make_shared<batch_dot_fwd_pd_t>(
fwd_desc, mxnet::CpuEngine::Get()->get_engine());
fwd = std::make_shared<batch_dot_fwd_t>(*fwd_pd);
}

void MKLDNNBatchDotFwd::Execute(const std::vector<NDArray> &inputs,
const std::vector<OpReqType> &req,
const std::vector<NDArray> &outputs) {
bartekkuncer marked this conversation as resolved.
Show resolved Hide resolved
auto engine = mxnet::CpuEngine::Get()->get_engine();
auto data = mkldnn::memory(fwd_pd->src_desc(), engine,
reinterpret_cast<void *>(inputs[0].data().dptr_));
auto weights =
mkldnn::memory(fwd_pd->weights_desc(), engine,
reinterpret_cast<void *>(inputs[1].data().dptr_));
mkldnn_output_t out_mem =
CreateMKLDNNMem(outputs[0], fwd_pd->dst_desc(), req[0], &inputs[0]);

mkldnn_args_map_t args = {
{MKLDNN_ARG_SRC, data},
{MKLDNN_ARG_WEIGHTS, weights},
{MKLDNN_ARG_DST, *out_mem.second},
};

MKLDNNStream::Get()->RegisterPrimArgs(*fwd, args);
CommitOutput(outputs[0], out_mem);
MKLDNNStream::Get()->Submit();
}

} // namespace op
} // namespace mxnet
#endif // MXNET_USE_ONEDNN == 1
6 changes: 6 additions & 0 deletions src/operator/nn/mkldnn/mkldnn_ops-inl.h
Original file line number Diff line number Diff line change
Expand Up @@ -128,6 +128,12 @@ void MKLDNNConcatBackward(const nnvm::NodeAttrs& attrs, const OpContext &ctx,
const std::vector<OpReqType>& req,
const std::vector<NDArray>& outputs);

/* For batch dot */
void MKLDNNBatchDotForward(const nnvm::NodeAttrs &attrs, const OpContext &ctx,
const std::vector<NDArray> &inputs,
const std::vector<OpReqType> &req,
const std::vector<NDArray> &outputs);

void MKLDNNSum(const mkldnn::memory &arr1, const mkldnn::memory &arr2,
const mkldnn::memory &out);

Expand Down
18 changes: 17 additions & 1 deletion src/operator/tensor/dot-inl.h
Original file line number Diff line number Diff line change
Expand Up @@ -65,6 +65,11 @@ struct DotParam : public dmlc::Parameter<DotParam> {
.add_enum("csr", kCSRStorage)
.set_default(dmlc::optional<int>());
}
bool operator==(const DotParam& other) const {
return this->transpose_a == other.transpose_a &&
this->transpose_b == other.transpose_b &&
this->forward_stype == other.forward_stype;
}
std::string ForwardStype2String(int forward_stype) {
switch (forward_stype) {
case kDefaultStorage:
Expand Down Expand Up @@ -1482,5 +1487,16 @@ inline bool BatchDotShape(const nnvm::NodeAttrs& attrs,

} // namespace op
} // namespace mxnet

namespace std {
template<>
struct hash<mxnet::op::DotParam> {
size_t operator()(const mxnet::op::DotParam& val) {
size_t ret = 0;
ret = dmlc::HashCombine(ret, val.transpose_a);
ret = dmlc::HashCombine(ret, val.transpose_b);
ret = dmlc::HashCombine(ret, val.forward_stype);
return ret;
}
};
} // namespace std
#endif // MXNET_OPERATOR_TENSOR_DOT_INL_H_
37 changes: 37 additions & 0 deletions src/operator/tensor/dot.cc
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,10 @@
*/

#include "./dot-inl.h"
#if MXNET_USE_ONEDNN == 1
#include "./../nn/mkldnn/mkldnn_base-inl.h"
#include "./../nn/mkldnn/mkldnn_ops-inl.h"
#endif // MXNET_USE_ONEDNN

namespace mxnet {
namespace op {
Expand Down Expand Up @@ -111,6 +115,34 @@ NNVM_REGISTER_OP(_backward_dot)
.set_attr<FComputeEx>("FComputeEx<cpu>", DotBackwardEx<cpu>)
.add_arguments(DotParam::__FIELDS__());

#if MXNET_USE_ONEDNN == 1
static void BatchDotComputeExCPU(const nnvm::NodeAttrs& attrs,
const OpContext& ctx,
const std::vector<NDArray>& inputs,
const std::vector<OpReqType>& req,
const std::vector<NDArray>& outputs) {
if (SupportMKLDNNBatchDot(inputs, outputs[0])) {
MKLDNN_OPCHECK_INIT(false, outputs.size(), inputs, outputs);
MKLDNNRun(MKLDNNBatchDotForward, attrs, ctx, inputs, req, outputs);
MKLDNN_OPCHECK_RUN(BatchDotForward_<cpu>, attrs, ctx, inputs, req, outputs);
return;
}
FallBackCompute(BatchDotForward_<cpu>, attrs, ctx, inputs, req, outputs);
}

static bool BatchDotStorageType(const nnvm::NodeAttrs& attrs,
const int dev_mask,
DispatchMode* dispatch_mode,
std::vector<int>* in_attrs,
std::vector<int>* out_attrs) {
CHECK_EQ(in_attrs->size(), 2);
CHECK_EQ(out_attrs->size(), 1);

return MKLDNNStorageType(attrs, dev_mask, true, dispatch_mode, in_attrs,
out_attrs);
}
#endif

NNVM_REGISTER_OP(batch_dot)
.add_alias("_npx_batch_dot")
.describe(R"doc(Batchwise dot product.
Expand Down Expand Up @@ -140,6 +172,11 @@ which is computed by::
})
.set_attr<THasDeterministicOutput>("THasDeterministicOutput", true)
.set_attr<FCompute>("FCompute<cpu>", BatchDotForward_<cpu>)
#if MXNET_USE_ONEDNN == 1
.set_attr<bool>("TIsMKLDNN", true)
.set_attr<FInferStorageType>("FInferStorageType", BatchDotStorageType)
.set_attr<FComputeEx>("FComputeEx<cpu>", BatchDotComputeExCPU)
#endif
.set_attr<nnvm::FGradient>("FGradient",
[](const nnvm::ObjectPtr& n,
const std::vector<nnvm::NodeEntry>& ograds) {
Expand Down