Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -21,13 +21,15 @@ import scala.concurrent.{ExecutionContext, Future}
import scala.concurrent.duration._

import org.apache.spark.{broadcast, SparkException}
import org.apache.spark.launcher.SparkLauncher
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.UnsafeRow
import org.apache.spark.sql.catalyst.plans.physical.{BroadcastMode, BroadcastPartitioning, Partitioning}
import org.apache.spark.sql.execution.{SparkPlan, SQLExecution}
import org.apache.spark.sql.execution.metric.SQLMetrics
import org.apache.spark.sql.execution.ui.SparkListenerDriverAccumUpdates
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.util.ThreadUtils

/**
Expand Down Expand Up @@ -70,38 +72,47 @@ case class BroadcastExchangeExec(
// This will run in another thread. Set the execution id so that we can connect these jobs
// with the correct execution.
SQLExecution.withExecutionId(sparkContext, executionId) {
val beforeCollect = System.nanoTime()
// Note that we use .executeCollect() because we don't want to convert data to Scala types
val input: Array[InternalRow] = child.executeCollect()
if (input.length >= 512000000) {
throw new SparkException(
s"Cannot broadcast the table with more than 512 millions rows: ${input.length} rows")
try {
val beforeCollect = System.nanoTime()
// Note that we use .executeCollect() because we don't want to convert data to Scala types
val input: Array[InternalRow] = child.executeCollect()
if (input.length >= 512000000) {
throw new SparkException(
s"Cannot broadcast the table with more than 512 millions rows: ${input.length} rows")
}
val beforeBuild = System.nanoTime()
longMetric("collectTime") += (beforeBuild - beforeCollect) / 1000000
val dataSize = input.map(_.asInstanceOf[UnsafeRow].getSizeInBytes.toLong).sum
longMetric("dataSize") += dataSize
if (dataSize >= (8L << 30)) {
throw new SparkException(
s"Cannot broadcast the table that is larger than 8GB: ${dataSize >> 30} GB")
}

// Construct and broadcast the relation.
val relation = mode.transform(input)
val beforeBroadcast = System.nanoTime()
longMetric("buildTime") += (beforeBroadcast - beforeBuild) / 1000000

val broadcasted = sparkContext.broadcast(relation)
longMetric("broadcastTime") += (System.nanoTime() - beforeBroadcast) / 1000000

// There are some cases we don't care about the metrics and call `SparkPlan.doExecute`
// directly without setting an execution id. We should be tolerant to it.
if (executionId != null) {
sparkContext.listenerBus.post(SparkListenerDriverAccumUpdates(
executionId.toLong, metrics.values.map(m => m.id -> m.value).toSeq))
}

broadcasted
} catch {
case oe: OutOfMemoryError =>
throw new OutOfMemoryError(s"Not enough memory to build and broadcast the table to " +
s"all worker nodes. As a workaround, you can either disable broadcast by setting " +
s"${SQLConf.AUTO_BROADCASTJOIN_THRESHOLD.key} to -1 or increase the spark driver " +
s"memory by setting ${SparkLauncher.DRIVER_MEMORY} to a higher value")
.initCause(oe.getCause)
}
val beforeBuild = System.nanoTime()
longMetric("collectTime") += (beforeBuild - beforeCollect) / 1000000
val dataSize = input.map(_.asInstanceOf[UnsafeRow].getSizeInBytes.toLong).sum
longMetric("dataSize") += dataSize
if (dataSize >= (8L << 30)) {
throw new SparkException(
s"Cannot broadcast the table that is larger than 8GB: ${dataSize >> 30} GB")
}

// Construct and broadcast the relation.
val relation = mode.transform(input)
val beforeBroadcast = System.nanoTime()
longMetric("buildTime") += (beforeBroadcast - beforeBuild) / 1000000

val broadcasted = sparkContext.broadcast(relation)
longMetric("broadcastTime") += (System.nanoTime() - beforeBroadcast) / 1000000

// There are some cases we don't care about the metrics and call `SparkPlan.doExecute`
// directly without setting an execution id. We should be tolerant to it.
if (executionId != null) {
sparkContext.listenerBus.post(SparkListenerDriverAccumUpdates(
executionId.toLong, metrics.values.map(m => m.id -> m.value).toSeq))
}

broadcasted
}
}(BroadcastExchangeExec.executionContext)
}
Expand Down