Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Hexagon] Float and quantized dense operators with schedules #12873

Merged
merged 19 commits into from
Jan 24, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 7 additions & 10 deletions python/tvm/topi/hexagon/qnn/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,16 +17,13 @@

""" Computes and schedules for Hexagon quantized ops """

from .adaptive_avg_pool1d import *
from .avg_pool2d import qnn_avg_pool2d_compute, qnn_avg_pool2d_schedule
from .qadd_qsub_qmul import *
from .dequantize import (
dequantize_compute,
dequantize_schedule,
)

from .quantize import quantize_compute, tir_quantize_schedule
from .conv2d_alter_op import *
from .dequantize import dequantize_compute, dequantize_schedule
from .global_avg_pool2d import *
from .nn import *
from .qadd_qsub_qmul import *
from .qdense import *
from .qdepthwise_conv2d_slice import qdepthwise_conv2d_compute, qdepthwise_conv2d_schedule
from .adaptive_avg_pool1d import *
from .global_avg_pool2d import *
from .conv2d_alter_op import *
from .quantize import quantize_compute, tir_quantize_schedule
193 changes: 193 additions & 0 deletions python/tvm/topi/hexagon/qnn/qdense.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,193 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

"""Schedule for dense operator"""

from tvm import te, tir
from tvm.topi import tag
from ..utils import get_layout_transform_fn


def qdense_compute(
tensor_a,
tensor_b,
zero_a,
scale_a,
zero_b,
scale_b,
zero_out=None,
scale_out=None,
bias=None,
q_dtype=None,
):
"""Hexagon's implementation of a sliced dense operator in Topi.
Uses matmul.

Parameters
----------
tensor_a : tvm.te.Tensor
data 2-D with shape [batch, in_dim]

tensor_b : tvm.te.Tensor
weight 2-D with shape [in_dim, out_dim]

zero_a : integer
quantization zero point for tensor a.

scale_a : float
quantization scale for tensor a.

zero_b : integer
quantization zero point for tensor b.

scale_b : float
quantization scale for tensor b.

zero_out : Optional[integer]
quantization zero point for output.

scale_out : Optional[float]
quantization scale for output.

bias : Optional[tvm.te.Tensor]
1-D with shape [out_dim]

q_dtype : Optional[str]
The output type.

Returns
-------
mat : tvm.te.Tensor
2-D with shape [batch, out_dim]

"""
if bias is not None:
assert len(bias.shape) == 1
if q_dtype is None:
q_dtype = tensor_a.dtype

batch, in_dim = tensor_a.shape
out_dim, red_dim = tensor_b.shape

# cmp should be done by values
assert int(in_dim) == int(red_dim)

k = te.reduce_axis((0, in_dim), name="k")
compute_lambda = lambda n, m: te.sum(
scale_a
* (tensor_a[n, k].astype("float32") - zero_a)
* scale_b
* (tensor_b[k, m].astype("float32") - zero_b),
axis=k,
)
compute_name = "qmatmul_sliced"

out = te.compute(
(batch, out_dim),
compute_lambda,
name=compute_name,
attrs={"layout_free_placeholders": [tensor_b]},
)

if bias is not None:
out = te.compute(
(batch, out_dim),
lambda i, j: out[i, j] + bias[j],
tag=tag.BROADCAST,
name="bias",
)

# Requantization of dense
if scale_out is not None:
out = te.compute(
(batch, out_dim),
lambda *i: (out[i] / scale_out + zero_out).astype(q_dtype),
name="requantize",
)

return out


def qdense_schedule(outs, ins, output_layout: str, input_layout: str):
"""Schedule for dense op.

Parameters
----------
outs: Array of Tensor
The computation graph description of dense in the format
of an array of tensors.

ins: Array of Tensor
Input tensors into graph.

output_layout: str
Descriptor string for physical layout

input_layout: str
Descriptor string for physical layout

Returns
-------
sch: Schedule
The computation schedule for the op.
"""
if not isinstance(ins, list):
ins = [ins]
if not isinstance(outs, list):
outs = [outs]

func = te.create_prim_func([*ins, *outs])
s = tir.Schedule(func)

matmul = s.get_block("qmatmul_sliced")
try:
requantize = s.get_block("requantize")
except tir.schedule.schedule.ScheduleError:
requantize = None
try:
bias = s.get_block("bias")
except tir.schedule.schedule.ScheduleError:
bias = None

input_transform_fn = get_layout_transform_fn(input_layout)
output_transform_fn = get_layout_transform_fn(output_layout)

# Transform input and output buffer
s.transform_layout(matmul, ("read", 0), input_transform_fn)
if requantize is not None:
s.transform_layout(requantize, ("write", 0), output_transform_fn)
elif bias is not None:
s.transform_layout(bias, ("write", 0), output_transform_fn)
else:
s.transform_layout(matmul, ("write", 0), output_transform_fn)

# Vectorize
_, matmul_c, _ = s.get_loops(matmul)
_, matmul_c_inner = s.split(matmul_c, [None, 128])
s.vectorize(matmul_c_inner)

# Compute everything inline
if bias is not None and requantize is not None:
_, bias_c = s.get_loops(bias)
s.compute_at(matmul, bias_c)
_, out_c = s.get_loops(requantize)
s.compute_at(bias, out_c)
elif bias is not None and requantize is None:
_, out_c = s.get_loops(bias)
s.compute_at(matmul, out_c)

return s
1 change: 1 addition & 0 deletions python/tvm/topi/hexagon/slice_ops/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,3 +37,4 @@
from .dwconv2d import *
from .depth_to_space import d2s_compute, d2s_schedule
from .global_avg_pool2d import *
from .dense import *
144 changes: 144 additions & 0 deletions python/tvm/topi/hexagon/slice_ops/dense.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,144 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

"""Schedule for dense operator"""

from tvm import te, tir
from tvm.topi import tag
from ..utils import get_layout_transform_fn


def dense_compute(tensor_a, tensor_b, bias=None, out_dtype=None):
"""Hexagon's implementation of a sliced dense operator in Topi.
Uses matmul.

Parameters
----------
tensor_a : tvm.te.Tensor
data 2-D with shape [batch, in_dim]

tensor_b : tvm.te.Tensor
weight 2-D with shape [in_dim, out_dim]

bias : Optional[tvm.te.Tensor]
1-D with shape [out_dim]

out_dtype : Optional[str]
The output type. This is used for mixed precision.

Returns
-------
output : tvm.te.Tensor
2-D with shape [batch, out_dim]

"""
if bias is not None:
assert len(bias.shape) == 1
if out_dtype is None:
out_dtype = tensor_a.dtype

batch, in_dim = tensor_a.shape
out_dim, red_dim = tensor_b.shape

# cmp should be done by values
assert int(in_dim) == int(red_dim)

k = te.reduce_axis((0, in_dim), name="k")
compute_lambda = lambda n, m: te.sum(
tensor_a[n, k].astype(out_dtype) * tensor_b[k, m].astype(out_dtype), axis=k
)
compute_name = "matmul_sliced"
compute_tag = "matmul"

mat = te.compute(
(batch, out_dim),
compute_lambda,
name=compute_name,
tag=compute_tag,
attrs={"layout_free_placeholders": [tensor_b]},
)

if bias is not None:
mat = te.compute(
(batch, out_dim),
lambda i, j: mat[i, j] + bias[j],
tag=tag.BROADCAST,
name="bias",
)

return mat


def dense_schedule(outs, ins, output_layout: str, input_layout: str):
"""Schedule for dense op.

Parameters
----------
outs: Array of Tensor
The computation graph description of dense in the format
of an array of tensors.

ins: Array of Tensor
Input tensors into graph.

output_layout: str
Descriptor string for physical layout

input_layout: str
Descriptor string for physical layout

Returns
-------
sch: Schedule
The computation schedule for the op.
"""
if not isinstance(ins, list):
ins = [ins]
if not isinstance(outs, list):
outs = [outs]

func = te.create_prim_func([*ins, *outs])
s = tir.Schedule(func)

matmul = s.get_block("matmul_sliced")
try:
bias = s.get_block("bias")
except tir.schedule.schedule.ScheduleError:
bias = None

input_transform_fn = get_layout_transform_fn(input_layout)
output_transform_fn = get_layout_transform_fn(output_layout)

# No bias
if bias is None:
s.transform_layout(matmul, ("read", 0), input_transform_fn)
# s.transform_layout(matmul, ("read", 1), input_transform_fn)
s.transform_layout(matmul, ("write", 0), output_transform_fn)
else:
s.transform_layout(matmul, ("read", 0), input_transform_fn)
s.transform_layout(bias, ("write", 0), output_transform_fn)

_, matmul_c, _ = s.get_loops(matmul)
_, matmul_c_inner = s.split(matmul_c, [None, 64])
s.vectorize(matmul_c_inner)

if bias is not None:
_, bias_c = s.get_loops(bias)
_, bias_c_inner = s.split(bias_c, [None, 64])
s.vectorize(bias_c_inner)

return s
Loading