Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Additional fix for PR#2972 (case of missing import) #3044

Merged
merged 1 commit into from
Apr 18, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion topi/python/topi/arm_cpu/conv2d.py
Original file line number Diff line number Diff line change
Expand Up @@ -700,7 +700,7 @@ def _alter_conv2d_layout_arm(attrs, inputs, tinfos, F):

new_attrs = {k: attrs[k] for k in attrs.keys()}

if F == tvm.relay.op:
if F.__name__ == 'tvm.relay.op':
# Derive channels for frontends (e.g ONNX) that miss "channel" field.
new_attrs["channels"] = inputs[1].checked_type.shape[attrs['kernel_layout'].index('O')]

Expand Down
2 changes: 1 addition & 1 deletion topi/python/topi/cuda/conv2d_winograd.py
Original file line number Diff line number Diff line change
Expand Up @@ -371,7 +371,7 @@ def _alter_conv2d_layout(attrs, inputs, tinfos, F):
copy_inputs = [s for s in inputs]
new_attrs = {k: attrs[k] for k in attrs.keys()}

if F == tvm.relay.op:
if F.__name__ == 'tvm.relay.op':
# Derive channels for frontends (e.g ONNX) that miss "channel" field.
new_attrs["channels"] = inputs[1].checked_type.shape[attrs['kernel_layout'].index('O')]

Expand Down
5 changes: 2 additions & 3 deletions topi/python/topi/intel_graphics/conv2d.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,6 @@ def tile_and_bind3d(s, tensor, z, y, x, z_factor=2, y_factor=None, x_factor=None

@conv2d_alter_layout.register(["intel_graphics"])
def _alter_conv2d_layout(attrs, inputs, tinfos, F):
import nnvm.symbol as sym

copy_inputs = [s for s in inputs]

Expand All @@ -75,11 +74,11 @@ def _alter_conv2d_layout(attrs, inputs, tinfos, F):
new_attrs = {k: attrs[k] for k in attrs.keys()}
new_attrs["kernel_layout"] = 'OIHW%do' % (oc_bn)

if F == tvm.relay.op:
if F.__name__ == 'tvm.relay.op':
# Derive channels for frontends (e.g ONNX) that miss "channel" field.
new_attrs["channels"] = inputs[1].checked_type.shape[attrs['kernel_layout'].index('O')]

if F == sym:
if F.__name__ == 'nnvm.symbol':
out = F.contrib.conv2d_NCHWc(*copy_inputs, **new_attrs)
else:
out = F.nn.contrib_conv2d_nchwc(*copy_inputs, **new_attrs)
Expand Down
12 changes: 6 additions & 6 deletions topi/python/topi/x86/conv2d.py
Original file line number Diff line number Diff line change
Expand Up @@ -323,26 +323,26 @@ def _topi_nn_conv2d_NCHWc(*args, **kwargs):

@conv2d_alter_layout.register("cpu")
def _alter_conv2d_layout(attrs, inputs, tinfo, F):
import nnvm.symbol as sym

copy_inputs = [s for s in inputs]
new_attrs = {k : attrs[k] for k in attrs.keys()}

if F == tvm.relay.op:
if F.__name__ == 'tvm.relay.op':
# Derive channels for frontends (e.g ONNX) that miss "channel" field.
new_attrs["channels"] = inputs[1].checked_type.shape[attrs['kernel_layout'].index('O')]

data, kernel = tinfo[0], tinfo[1]
batch_size, in_channel, height, width = get_const_tuple(data.shape)

groups = attrs.get_int("groups")
out_channel = attrs.get_int("channels") if F == sym else new_attrs["channels"]
out_channel = attrs.get_int("channels") \
if F.__name__ == 'nnvm.symbol' else new_attrs["channels"]
padding = attrs.get_int_tuple("padding")
strides = attrs.get_int_tuple("strides")
dilation = attrs.get_int_tuple("dilation")
out_dtype = attrs["out_dtype"]

layout_name = 'layout' if F == sym else 'data_layout'
layout_name = 'layout' if F.__name__ == 'nnvm.symbol' else 'data_layout'

layout = attrs[layout_name]
kh, kw = attrs.get_int_tuple("kernel_size")
Expand Down Expand Up @@ -399,12 +399,12 @@ def _alter_conv2d_layout(attrs, inputs, tinfo, F):
dispatch_ctx.update(target, new_workload, cfg)

if is_depthwise:
if F == sym:
if F.__name__ == 'nnvm.symbol':
logging.warning("Use native layout for depthwise convolution on NNVM.")
return None
return F.nn.contrib_depthwise_conv2d_nchwc(*copy_inputs, **new_attrs)
else:
if F == sym:
if F.__name__ == 'nnvm.symbol':
return F.contrib.conv2d_NCHWc(*copy_inputs, **new_attrs)
return F.nn.contrib_conv2d_nchwc(*copy_inputs, **new_attrs)

Expand Down