Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[BYOC][ACL] Add maximum support for float32 #6506

Merged
merged 2 commits into from
Sep 23, 2020
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions python/tvm/relay/op/contrib/arm_compute_lib.py
Original file line number Diff line number Diff line change
Expand Up @@ -337,3 +337,11 @@ def global_avg_pool2d(attrs, args):
if attrs.layout != "NHWC":
return False
return True


@tvm.ir.register_op_attr("maximum", "target.arm_compute_lib")
def maximum(attrs, args):
"""Check if the external ACL codegen for maximum should be used."""
type_a = args[0].checked_type
type_b = args[0].checked_type
return (type_a.dtype == "float32") and (type_b.dtype == "float32")
19 changes: 18 additions & 1 deletion src/runtime/contrib/arm_compute_lib/acl_runtime.cc
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@
#ifdef TVM_GRAPH_RUNTIME_ARM_COMPUTE_LIB
#include <arm_compute/core/Types.h>
#include <arm_compute/runtime/NEON/functions/NEConvolutionLayer.h>
#include <arm_compute/runtime/NEON/functions/NEElementwiseOperations.h>
#include <arm_compute/runtime/NEON/functions/NEFullyConnectedLayer.h>
#include <arm_compute/runtime/NEON/functions/NEPoolingLayer.h>
#include <arm_compute/runtime/NEON/functions/NEReshapeLayer.h>
Expand Down Expand Up @@ -139,12 +140,13 @@ class ACLRuntime : public JSONRuntimeBase {
CreateGlobalPoolingLayer(&layer_, node);
} else if ("reshape" == op_name) {
CreateReshapeLayer(&layer_, node);
} else if ("maximum" == op_name) {
CreateMaximumLayer(&layer_, node);
} else {
LOG(FATAL) << "Unsupported op: " << op_name;
}
}
}

this->layer_.function->prepare();
if (num_pools > 0) mm->populate(this->allocator_, num_pools);
}
Expand Down Expand Up @@ -401,6 +403,21 @@ class ACLRuntime : public JSONRuntimeBase {
layer->function = function;
}

/*!
* \brief Create a maximum layer.
*
* \param layer The ACL layer to build. Containing inputs, outputs and the ACL function.
* \param node The JSON representation of the operator.
*/
void CreateMaximumLayer(CachedLayer* layer, const JSONGraphNode& node) {
layer->inputs.push_back(MakeACLTensorFromJSONEntry(node.GetInputs()[0]));
layer->inputs.push_back(MakeACLTensorFromJSONEntry(node.GetInputs()[1]));
layer->outputs.push_back(MakeACLTensorFromJSONNode(node));
auto function = std::make_shared<arm_compute::NEElementwiseMax>();
function->configure(&layer->inputs[0], &layer->inputs[1], &layer->outputs[0]);
layer->function = function;
}

/*! \brief Allow ACL functions to request auxiliary memory from TVM. */
ACLAllocator allocator_;
/*!
Expand Down
104 changes: 104 additions & 0 deletions tests/python/contrib/test_arm_compute_lib/test_maximum.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Arm Compute Library integration reshape tests."""

import numpy as np

import tvm
from tvm import relay

from .infrastructure import (
skip_runtime_test,
skip_codegen_test,
build_and_run,
verify,
verify_codegen,
)
from .infrastructure import Device


def _get_model(input_shape, dtype, var_names):
"""Return a model and any parameters it may have."""
a = relay.var(next(var_names), shape=input_shape, dtype=dtype)
b = relay.var(next(var_names), shape=input_shape, dtype=dtype)
max = relay.maximum(a, b)
return max


def _get_expected_codegen(shape, dtype):
node = {
"op": "kernel",
"name": "maximum",
"inputs": [[0, 0, 0], [1, 0, 0]],
"attrs": {
"num_inputs": "2",
"num_outputs": "1",
"shape": [[list(shape)]],
"dtype": [[dtype]],
},
}

inputs = [
{"op": "input", "name": "", "attrs": {"shape": [[list(shape)]], "dtype": [[dtype]]}},
{"op": "input", "name": "", "attrs": {"shape": [[list(shape)]], "dtype": [[dtype]]}},
]
inputs.append(node)
return inputs


def test_maximum():
Device.load("test_config.json")

if skip_runtime_test():
return

device = Device()
np.random.seed(0)

for dtype, low, high, atol, rtol in [
("float32", -127, 128, 0.001, 0.001),
("float32", -1, 1, 0.001, 0.001),
comaniac marked this conversation as resolved.
Show resolved Hide resolved
]:
inputs = {
"a": tvm.nd.array(np.random.uniform(low, high, (100, 100)).astype(dtype)),
"b": tvm.nd.array(np.random.uniform(low, high, (100, 100)).astype(dtype)),
}
outputs = []
func = _get_model(inputs["a"].shape, dtype, iter(inputs))

for acl in [False, True]:
outputs.append(build_and_run(func, inputs, 1, None, device, enable_acl=acl)[0])

verify(outputs, atol=1e-7, rtol=1e-7)


def test_codegen_maximum():
if skip_codegen_test():
return

shape = (100, 100)
inputs = {"a", "b"}
for dtype in ["float32"]:
args = (shape, dtype)
func = _get_model(*args, iter(inputs))
exp_codegen = _get_expected_codegen(*args)
verify_codegen(func, exp_codegen, 1)


if __name__ == "__main__":
test_maximum()
test_codegen_maximum()