Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[TORCH] Implement avg_pool1d #7694

Merged
merged 4 commits into from
Mar 23, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
84 changes: 46 additions & 38 deletions python/tvm/relay/frontend/pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -1353,47 +1353,54 @@ def softplus(self, inputs, input_types):
beta = _expr.const(float(inputs[1]), dtype=dtype)
return _op.log(_op.exp(inputs[0] * beta) + _expr.const(1.0, dtype=dtype)) / beta

def avg_pool2d(self, inputs, input_types):
data = inputs[0]

pool_size = self.convert_const_list(inputs[1])
strides = self.convert_const_list(inputs[2] if inputs[2] else pool_size)
padding = inputs[3]
ceil_mode = int(inputs[4])
count_include_pad = int(inputs[5])

def func(x):
return _op.nn.avg_pool2d(
x,
pool_size=pool_size,
strides=strides,
padding=padding,
ceil_mode=ceil_mode,
count_include_pad=count_include_pad,
)
def make_avg_pool(self, dim):
def avg_pool(inputs, input_types):
data = inputs[0]

if self.is_quantized_tensor(data):
return qnn_torch.apply_with_upcast(data, func)
pool_size = self.convert_const_list(inputs[1])
strides = self.convert_const_list(inputs[2] if inputs[2] else pool_size)
padding = inputs[3]
ceil_mode = int(inputs[4])
count_include_pad = int(inputs[5])

return func(data)
def func(x):
if dim == 1:
return _op.nn.avg_pool1d(
x,
pool_size=pool_size,
strides=strides,
padding=padding,
ceil_mode=ceil_mode,
count_include_pad=count_include_pad,
)
elif dim == 2:
return _op.nn.avg_pool2d(
x,
pool_size=pool_size,
strides=strides,
padding=padding,
ceil_mode=ceil_mode,
count_include_pad=count_include_pad,
)
elif dim == 3:
return _op.nn.avg_pool3d(
x,
pool_size=pool_size,
strides=strides,
padding=padding,
ceil_mode=ceil_mode,
count_include_pad=count_include_pad,
)
else:
msg = "Average Pooling dimension should be between 1 and 3"
raise RuntimeError(msg)

def avg_pool3d(self, inputs, input_types):
data = inputs[0]
if self.is_quantized_tensor(data):
return qnn_torch.apply_with_upcast(data, func)

pool_size = inputs[1]
strides = inputs[2] if inputs[2] else pool_size
padding = inputs[3]
ceil_mode = int(inputs[4])
count_include_pad = int(inputs[5])
return func(data)

return _op.nn.avg_pool3d(
data,
pool_size=pool_size,
strides=strides,
padding=padding,
ceil_mode=ceil_mode,
count_include_pad=count_include_pad,
)
return avg_pool

def linear(self, inputs, input_types):
# https://pytorch.org/docs/stable/nn.functional.html#linear
Expand Down Expand Up @@ -2350,8 +2357,9 @@ def create_convert_map(self):
"aten::log_softmax": self.log_softmax,
"aten::sigmoid": self.sigmoid,
"aten::softplus": self.softplus,
"aten::avg_pool2d": self.avg_pool2d,
"aten::avg_pool3d": self.avg_pool3d,
"aten::avg_pool1d": self.make_avg_pool(1),
"aten::avg_pool2d": self.make_avg_pool(2),
"aten::avg_pool3d": self.make_avg_pool(3),
"aten::linear": self.linear,
"aten::dropout": self.dropout,
"aten::dropout_": self.dropout,
Expand Down
28 changes: 26 additions & 2 deletions tests/python/frontend/pytorch/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -809,7 +809,24 @@ def forward(self, *args):


@tvm.testing.uses_gpu
def test_forward_avgpool():
def test_forward_avgpool1d():
torch.set_grad_enabled(False)
input_shape = [1, 3, 10]

class AvgPool1D2(Module):
def forward(self, *args):
return torch.nn.functional.avg_pool1d(args[0], kernel_size=[10])

input_data = torch.rand(input_shape).float()
verify_model(torch.nn.AvgPool1d(kernel_size=[10]).eval(), input_data=input_data)
verify_model(AvgPool1D2().float().eval(), input_data=input_data)
verify_model(
torch.nn.AvgPool1d(kernel_size=[5], stride=2, padding=2).eval(), input_data=input_data
)


@tvm.testing.uses_gpu
def test_forward_avgpool2d():
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10]

Expand All @@ -820,6 +837,9 @@ def forward(self, *args):
input_data = torch.rand(input_shape).float()
verify_model(torch.nn.AvgPool2d(kernel_size=[10, 10]).eval(), input_data=input_data)
verify_model(AvgPool2D2().float().eval(), input_data=input_data)
verify_model(
torch.nn.AvgPool2d(kernel_size=5, stride=2, padding=2).eval(), input_data=input_data
)


@tvm.testing.uses_gpu
Expand All @@ -834,6 +854,9 @@ def forward(self, *args):
input_data = torch.rand(input_shape).float()
verify_model(torch.nn.AvgPool3d(kernel_size=[10, 10, 10]).eval(), input_data=input_data)
verify_model(AvgPool3D1().float().eval(), input_data=input_data)
verify_model(
torch.nn.AvgPool3d(kernel_size=5, stride=2, padding=2).eval(), input_data=input_data
)


@tvm.testing.uses_gpu
Expand Down Expand Up @@ -3838,7 +3861,8 @@ def test_fn(is_sorted, return_inverse, return_counts):
test_forward_logsoftmax()
test_forward_sigmoid()
test_forward_dense()
test_forward_avgpool()
test_forward_avgpool1d()
test_forward_avgpool2d()
test_forward_avgpool3d()
test_forward_dropout()
test_forward_slice()
Expand Down