-
Notifications
You must be signed in to change notification settings - Fork 467
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Regressions for the TREC 2019 Deep Learning Track (Passage Ranking Ta…
…sk) (#997)
- Loading branch information
Showing
9 changed files
with
9,691 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
# Anserini: Regressions for [DL19 (Passage)](https://github.com/microsoft/TREC-2019-Deep-Learning) | ||
|
||
This page describes experiments, integrated into Anserini's regression testing framework, for the TREC 2019 Deep Learning Track (Passage Ranking Task) on the MS MARCO passage collection using relevance judgments from NIST. | ||
Note that the NIST relevance judgments provide far more relevant passages per topic, unlike the "sparse" judgments provided by Microsoft (these are sometimes called "dense" judgments to emphasize this contrast). | ||
For additional instructions on working with MS MARCO passage collection, refer to [this page](experiments-msmarco-passage.md). | ||
|
||
The exact configurations for these regressions are stored in [this YAML file](../src/main/resources/regression/dl19-passage.yaml). | ||
Note that this page is automatically generated from [this template](../src/main/resources/docgen/templates/dl19-passage.template) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead. | ||
|
||
## Indexing | ||
|
||
Typical indexing command: | ||
|
||
``` | ||
nohup sh target/appassembler/bin/IndexCollection -collection JsonCollection -input /path/to/dl19-passage \ | ||
-index lucene-index.msmarco-passage.pos+docvectors+rawdocs -generator LuceneDocumentGenerator -threads 9 \ | ||
-storePositions -storeDocvectors -storeRawDocs >& log.dl19-passage.pos+docvectors+rawdocs & | ||
``` | ||
|
||
The directory `/path/to/msmarco-passage/` should be a directory containing `jsonl` files converted from the official passage collection, which is in `tsv` format. | ||
[This page](experiments-msmarco-passage.md) explains how to perform this conversion. | ||
|
||
For additional details, see explanation of [common indexing options](common-indexing-options.md). | ||
|
||
## Retrieval | ||
|
||
Topics and qrels are stored in [`src/main/resources/topics-and-qrels/`](../src/main/resources/topics-and-qrels/). | ||
The regression experiments here evaluate on the 43 topics for which NIST has provided judgments as part of the TREC 2019 Deep Learning Track. | ||
The original data can be found [here](https://trec.nist.gov/data/deep2019.html). | ||
|
||
After indexing has completed, you should be able to perform retrieval as follows: | ||
|
||
``` | ||
nohup target/appassembler/bin/SearchCollection -index lucene-index.dl19-passage.pos+docvectors+rawdocs \ | ||
-topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.dl19-passage.txt \ | ||
-bm25 -output run.dl19-passage.bm25-default.topics.dl19-passage.txt & | ||
nohup target/appassembler/bin/SearchCollection -index lucene-index.dl19-passage.pos+docvectors+rawdocs \ | ||
-topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.dl19-passage.txt \ | ||
-bm25 -rm3 -output run.dl19-passage.bm25-default+rm3.topics.dl19-passage.txt & | ||
nohup target/appassembler/bin/SearchCollection -index lucene-index.dl19-passage.pos+docvectors+rawdocs \ | ||
-topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.dl19-passage.txt \ | ||
-bm25 -axiom -axiom.deterministic -rerankCutoff 20 -output run.dl19-passage.bm25-default+ax.topics.dl19-passage.txt & | ||
nohup target/appassembler/bin/SearchCollection -index lucene-index.dl19-passage.pos+docvectors+rawdocs \ | ||
-topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.dl19-passage.txt \ | ||
-bm25 -bm25prf -output run.dl19-passage.bm25-default+prf.topics.dl19-passage.txt & | ||
nohup target/appassembler/bin/SearchCollection -index lucene-index.dl19-passage.pos+docvectors+rawdocs \ | ||
-topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.dl19-passage.txt \ | ||
-bm25 -bm25.k1 0.82 -bm25.b 0.68 -output run.dl19-passage.bm25-tuned.topics.dl19-passage.txt & | ||
nohup target/appassembler/bin/SearchCollection -index lucene-index.dl19-passage.pos+docvectors+rawdocs \ | ||
-topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.dl19-passage.txt \ | ||
-bm25 -bm25.k1 0.82 -bm25.b 0.68 -rm3 -output run.dl19-passage.bm25-tuned+rm3.topics.dl19-passage.txt & | ||
nohup target/appassembler/bin/SearchCollection -index lucene-index.dl19-passage.pos+docvectors+rawdocs \ | ||
-topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.dl19-passage.txt \ | ||
-bm25 -bm25.k1 0.82 -bm25.b 0.68 -axiom -axiom.deterministic -rerankCutoff 20 -output run.dl19-passage.bm25-tuned+ax.topics.dl19-passage.txt & | ||
nohup target/appassembler/bin/SearchCollection -index lucene-index.dl19-passage.pos+docvectors+rawdocs \ | ||
-topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.dl19-passage.txt \ | ||
-bm25 -bm25.k1 0.82 -bm25.b 0.68 -bm25prf -output run.dl19-passage.bm25-tuned+prf.topics.dl19-passage.txt & | ||
``` | ||
|
||
Evaluation can be performed using `trec_eval`: | ||
|
||
``` | ||
eval/trec_eval.9.0.4/trec_eval -m map -c -m ndcg_cut.10 -c -m recip_rank -c -m recall.100 -c -m recall.1000 -c src/main/resources/topics-and-qrels/qrels.dl19-passage.txt run.dl19-passage.bm25-default.topics.dl19-passage.txt | ||
eval/trec_eval.9.0.4/trec_eval -m map -c -m ndcg_cut.10 -c -m recip_rank -c -m recall.100 -c -m recall.1000 -c src/main/resources/topics-and-qrels/qrels.dl19-passage.txt run.dl19-passage.bm25-default+rm3.topics.dl19-passage.txt | ||
eval/trec_eval.9.0.4/trec_eval -m map -c -m ndcg_cut.10 -c -m recip_rank -c -m recall.100 -c -m recall.1000 -c src/main/resources/topics-and-qrels/qrels.dl19-passage.txt run.dl19-passage.bm25-default+ax.topics.dl19-passage.txt | ||
eval/trec_eval.9.0.4/trec_eval -m map -c -m ndcg_cut.10 -c -m recip_rank -c -m recall.100 -c -m recall.1000 -c src/main/resources/topics-and-qrels/qrels.dl19-passage.txt run.dl19-passage.bm25-default+prf.topics.dl19-passage.txt | ||
eval/trec_eval.9.0.4/trec_eval -m map -c -m ndcg_cut.10 -c -m recip_rank -c -m recall.100 -c -m recall.1000 -c src/main/resources/topics-and-qrels/qrels.dl19-passage.txt run.dl19-passage.bm25-tuned.topics.dl19-passage.txt | ||
eval/trec_eval.9.0.4/trec_eval -m map -c -m ndcg_cut.10 -c -m recip_rank -c -m recall.100 -c -m recall.1000 -c src/main/resources/topics-and-qrels/qrels.dl19-passage.txt run.dl19-passage.bm25-tuned+rm3.topics.dl19-passage.txt | ||
eval/trec_eval.9.0.4/trec_eval -m map -c -m ndcg_cut.10 -c -m recip_rank -c -m recall.100 -c -m recall.1000 -c src/main/resources/topics-and-qrels/qrels.dl19-passage.txt run.dl19-passage.bm25-tuned+ax.topics.dl19-passage.txt | ||
eval/trec_eval.9.0.4/trec_eval -m map -c -m ndcg_cut.10 -c -m recip_rank -c -m recall.100 -c -m recall.1000 -c src/main/resources/topics-and-qrels/qrels.dl19-passage.txt run.dl19-passage.bm25-tuned+prf.topics.dl19-passage.txt | ||
``` | ||
|
||
## Effectiveness | ||
|
||
With the above commands, you should be able to replicate the following results: | ||
|
||
MAP | BM25 (Default)| +RM3 | +Ax | +PRF | BM25 (Tuned)| +RM3 | +Ax | +PRF | | ||
:---------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | ||
[DL19 (Passage)](https://trec.nist.gov/data/deep2019.html)| 0.3773 | 0.4270 | 0.4651 | 0.4533 | 0.3766 | 0.4249 | 0.4722 | 0.4522 | | ||
|
||
|
||
NDCG@10 | BM25 (Default)| +RM3 | +Ax | +PRF | BM25 (Tuned)| +RM3 | +Ax | +PRF | | ||
:---------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | ||
[DL19 (Passage)](https://trec.nist.gov/data/deep2019.html)| 0.5058 | 0.5180 | 0.5511 | 0.5372 | 0.4973 | 0.5231 | 0.5461 | 0.5536 | | ||
|
||
|
||
RR | BM25 (Default)| +RM3 | +Ax | +PRF | BM25 (Tuned)| +RM3 | +Ax | +PRF | | ||
:---------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | ||
[DL19 (Passage)](https://trec.nist.gov/data/deep2019.html)| 0.8245 | 0.8167 | 0.7736 | 0.8170 | 0.8457 | 0.8229 | 0.8218 | 0.8178 | | ||
|
||
|
||
R@100 | BM25 (Default)| +RM3 | +Ax | +PRF | BM25 (Tuned)| +RM3 | +Ax | +PRF | | ||
:---------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | ||
[DL19 (Passage)](https://trec.nist.gov/data/deep2019.html)| 0.4531 | 0.4761 | 0.4995 | 0.4974 | 0.4603 | 0.4747 | 0.5065 | 0.4969 | | ||
|
||
|
||
R@1000 | BM25 (Default)| +RM3 | +Ax | +PRF | BM25 (Tuned)| +RM3 | +Ax | +PRF | | ||
:---------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | ||
[DL19 (Passage)](https://trec.nist.gov/data/deep2019.html)| 0.7389 | 0.7882 | 0.8129 | 0.7845 | 0.7384 | 0.7762 | 0.8094 | 0.7894 | | ||
|
||
The setting "default" refers the default BM25 settings of `k1=0.9`, `b=0.4`, while "tuned" refers to the tuned setting of `k1=0.82`, `b=0.68` (see [this page](experiments-msmarco-passage.md) for more details about tuning). | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,48 @@ | ||
# Anserini: Regressions for [DL19 (Passage)](https://github.com/microsoft/TREC-2019-Deep-Learning) | ||
|
||
This page describes experiments, integrated into Anserini's regression testing framework, for the TREC 2019 Deep Learning Track (Passage Ranking Task) on the MS MARCO passage collection using relevance judgments from NIST. | ||
Note that the NIST relevance judgments provide far more relevant passages per topic, unlike the "sparse" judgments provided by Microsoft (these are sometimes called "dense" judgments to emphasize this contrast). | ||
For additional instructions on working with MS MARCO passage collection, refer to [this page](experiments-msmarco-passage.md). | ||
|
||
The exact configurations for these regressions are stored in [this YAML file](../src/main/resources/regression/dl19-passage.yaml). | ||
Note that this page is automatically generated from [this template](../src/main/resources/docgen/templates/dl19-passage.template) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead. | ||
|
||
## Indexing | ||
|
||
Typical indexing command: | ||
|
||
``` | ||
${index_cmds} | ||
``` | ||
|
||
The directory `/path/to/msmarco-passage/` should be a directory containing `jsonl` files converted from the official passage collection, which is in `tsv` format. | ||
[This page](experiments-msmarco-passage.md) explains how to perform this conversion. | ||
|
||
For additional details, see explanation of [common indexing options](common-indexing-options.md). | ||
|
||
## Retrieval | ||
|
||
Topics and qrels are stored in [`src/main/resources/topics-and-qrels/`](../src/main/resources/topics-and-qrels/). | ||
The regression experiments here evaluate on the 43 topics for which NIST has provided judgments as part of the TREC 2019 Deep Learning Track. | ||
The original data can be found [here](https://trec.nist.gov/data/deep2019.html). | ||
|
||
After indexing has completed, you should be able to perform retrieval as follows: | ||
|
||
``` | ||
${ranking_cmds} | ||
``` | ||
|
||
Evaluation can be performed using `trec_eval`: | ||
|
||
``` | ||
${eval_cmds} | ||
``` | ||
|
||
## Effectiveness | ||
|
||
With the above commands, you should be able to replicate the following results: | ||
|
||
${effectiveness} | ||
|
||
The setting "default" refers the default BM25 settings of `k1=0.9`, `b=0.4`, while "tuned" refers to the tuned setting of `k1=0.82`, `b=0.68` (see [this page](experiments-msmarco-passage.md) for more details about tuning). | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.