Skip to content

Commit

Permalink
refactor radard
Browse files Browse the repository at this point in the history
  • Loading branch information
haraschax committed Mar 3, 2023
1 parent 6c43205 commit 4b3507f
Show file tree
Hide file tree
Showing 2 changed files with 169 additions and 168 deletions.
166 changes: 166 additions & 0 deletions selfdrive/controls/lib/radar_helpers.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,8 @@
import math
import cereal.messaging as messaging
from collections import defaultdict, deque
from third_party.cluster.fastcluster_py import cluster_points_centroid
from common.numpy_fast import interp
from common.numpy_fast import mean
from common.kalman.simple_kalman import KF1D

Expand All @@ -14,6 +19,81 @@
RADAR_TO_CENTER = 2.7 # (deprecated) RADAR is ~ 2.7m ahead from center of car
RADAR_TO_CAMERA = 1.52 # RADAR is ~ 1.5m ahead from center of mesh frame

class KalmanParams():
def __init__(self, dt):
# Lead Kalman Filter params, calculating K from A, C, Q, R requires the control library.
# hardcoding a lookup table to compute K for values of radar_ts between 0.01s and 0.2s
assert dt > .01 and dt < .2, "Radar time step must be between .01s and 0.2s"
self.A = [[1.0, dt], [0.0, 1.0]]
self.C = [1.0, 0.0]
#Q = np.matrix([[10., 0.0], [0.0, 100.]])
#R = 1e3
#K = np.matrix([[ 0.05705578], [ 0.03073241]])
dts = [dt * 0.01 for dt in range(1, 21)]
K0 = [0.12287673, 0.14556536, 0.16522756, 0.18281627, 0.1988689, 0.21372394,
0.22761098, 0.24069424, 0.253096, 0.26491023, 0.27621103, 0.28705801,
0.29750003, 0.30757767, 0.31732515, 0.32677158, 0.33594201, 0.34485814,
0.35353899, 0.36200124]
K1 = [0.29666309, 0.29330885, 0.29042818, 0.28787125, 0.28555364, 0.28342219,
0.28144091, 0.27958406, 0.27783249, 0.27617149, 0.27458948, 0.27307714,
0.27162685, 0.27023228, 0.26888809, 0.26758976, 0.26633338, 0.26511557,
0.26393339, 0.26278425]
self.K = [[interp(dt, dts, K0)], [interp(dt, dts, K1)]]


def laplacian_pdf(x, mu, b):
b = max(b, 1e-4)
return math.exp(-abs(x-mu)/b)


def match_vision_to_cluster(v_ego, lead, clusters):
# match vision point to best statistical cluster match
offset_vision_dist = lead.x[0] - RADAR_TO_CAMERA

def prob(c):
prob_d = laplacian_pdf(c.dRel, offset_vision_dist, lead.xStd[0])
prob_y = laplacian_pdf(c.yRel, -lead.y[0], lead.yStd[0])
prob_v = laplacian_pdf(c.vRel + v_ego, lead.v[0], lead.vStd[0])

# This is isn't exactly right, but good heuristic
return prob_d * prob_y * prob_v

cluster = max(clusters, key=prob)

# if no 'sane' match is found return -1
# stationary radar points can be false positives
dist_sane = abs(cluster.dRel - offset_vision_dist) < max([(offset_vision_dist)*.25, 5.0])
vel_sane = (abs(cluster.vRel + v_ego - lead.v[0]) < 10) or (v_ego + cluster.vRel > 3)
if dist_sane and vel_sane:
return cluster
else:
return None


def get_lead(v_ego, ready, clusters, lead_msg, low_speed_override=True):
# Determine leads, this is where the essential logic happens
if len(clusters) > 0 and ready and lead_msg.prob > .5:
cluster = match_vision_to_cluster(v_ego, lead_msg, clusters)
else:
cluster = None

lead_dict = {'status': False}
if cluster is not None:
lead_dict = cluster.get_RadarState(lead_msg.prob)
elif (cluster is None) and ready and (lead_msg.prob > .5):
lead_dict = Cluster().get_RadarState_from_vision(lead_msg, v_ego)

if low_speed_override:
low_speed_clusters = [c for c in clusters if c.potential_low_speed_lead(v_ego)]
if len(low_speed_clusters) > 0:
closest_cluster = min(low_speed_clusters, key=lambda c: c.dRel)

# Only choose new cluster if it is actually closer than the previous one
if (not lead_dict['status']) or (closest_cluster.dRel < lead_dict['dRel']):
lead_dict = closest_cluster.get_RadarState()

return lead_dict

class Track():
def __init__(self, v_lead, kalman_params):
self.cnt = 0
Expand Down Expand Up @@ -156,3 +236,89 @@ def potential_low_speed_lead(self, v_ego):

def is_potential_fcw(self, model_prob):
return model_prob > .9


class RadarD():
def __init__(self, radar_ts, delay=0):
self.current_time = 0

self.tracks = defaultdict(dict)
self.kalman_params = KalmanParams(radar_ts)

# v_ego
self.v_ego = 0.
self.v_ego_hist = deque([0], maxlen=delay+1)

self.ready = False

def update(self, sm, rr):
self.current_time = 1e-9*max(sm.logMonoTime.values())

if sm.updated['carState']:
self.v_ego = sm['carState'].vEgo
self.v_ego_hist.append(self.v_ego)
if sm.updated['modelV2']:
self.ready = True

ar_pts = {}
for pt in rr.points:
ar_pts[pt.trackId] = [pt.dRel, pt.yRel, pt.vRel, pt.measured]

# *** remove missing points from meta data ***
for ids in list(self.tracks.keys()):
if ids not in ar_pts:
self.tracks.pop(ids, None)

# *** compute the tracks ***
for ids in ar_pts:
rpt = ar_pts[ids]

# align v_ego by a fixed time to align it with the radar measurement
v_lead = rpt[2] + self.v_ego_hist[0]

# create the track if it doesn't exist or it's a new track
if ids not in self.tracks:
self.tracks[ids] = Track(v_lead, self.kalman_params)
self.tracks[ids].update(rpt[0], rpt[1], rpt[2], v_lead, rpt[3])

idens = list(sorted(self.tracks.keys()))
track_pts = [self.tracks[iden].get_key_for_cluster() for iden in idens]

# If we have multiple points, cluster them
if len(track_pts) > 1:
cluster_idxs = cluster_points_centroid(track_pts, 2.5)
clusters = [None] * (max(cluster_idxs) + 1)

for idx in range(len(track_pts)):
cluster_i = cluster_idxs[idx]
if clusters[cluster_i] is None:
clusters[cluster_i] = Cluster()
clusters[cluster_i].add(self.tracks[idens[idx]])
elif len(track_pts) == 1:
# FIXME: cluster_point_centroid hangs forever if len(track_pts) == 1
cluster_idxs = [0]
clusters = [Cluster()]
clusters[0].add(self.tracks[idens[0]])
else:
clusters = []

# if a new point, reset accel to the rest of the cluster
for idx in range(len(track_pts)):
if self.tracks[idens[idx]].cnt <= 1:
aLeadK = clusters[cluster_idxs[idx]].aLeadK
aLeadTau = clusters[cluster_idxs[idx]].aLeadTau
self.tracks[idens[idx]].reset_a_lead(aLeadK, aLeadTau)

# *** publish radarState ***
dat = messaging.new_message('radarState')
dat.valid = sm.all_checks() and len(rr.errors) == 0
radarState = dat.radarState
radarState.mdMonoTime = sm.logMonoTime['modelV2']
radarState.radarErrors = list(rr.errors)
radarState.carStateMonoTime = sm.logMonoTime['carState']

leads_v3 = sm['modelV2'].leadsV3
if len(leads_v3) > 1:
radarState.leadOne = get_lead(self.v_ego, self.ready, clusters, leads_v3[0], low_speed_override=True)
radarState.leadTwo = get_lead(self.v_ego, self.ready, clusters, leads_v3[1], low_speed_override=False)
return dat
171 changes: 3 additions & 168 deletions selfdrive/controls/radard.py
Original file line number Diff line number Diff line change
@@ -1,178 +1,13 @@
#!/usr/bin/env python3
import importlib
import math
from collections import defaultdict, deque

import cereal.messaging as messaging

from cereal import car
from common.numpy_fast import interp
from common.params import Params
from common.realtime import Ratekeeper, Priority, config_realtime_process
from selfdrive.controls.lib.radar_helpers import Cluster, Track, RADAR_TO_CAMERA
from selfdrive.controls.lib.radar_helpers import RadarD
from system.swaglog import cloudlog
from third_party.cluster.fastcluster_py import cluster_points_centroid


class KalmanParams():
def __init__(self, dt):
# Lead Kalman Filter params, calculating K from A, C, Q, R requires the control library.
# hardcoding a lookup table to compute K for values of radar_ts between 0.01s and 0.2s
assert dt > .01 and dt < .2, "Radar time step must be between .01s and 0.2s"
self.A = [[1.0, dt], [0.0, 1.0]]
self.C = [1.0, 0.0]
#Q = np.matrix([[10., 0.0], [0.0, 100.]])
#R = 1e3
#K = np.matrix([[ 0.05705578], [ 0.03073241]])
dts = [dt * 0.01 for dt in range(1, 21)]
K0 = [0.12287673, 0.14556536, 0.16522756, 0.18281627, 0.1988689, 0.21372394,
0.22761098, 0.24069424, 0.253096, 0.26491023, 0.27621103, 0.28705801,
0.29750003, 0.30757767, 0.31732515, 0.32677158, 0.33594201, 0.34485814,
0.35353899, 0.36200124]
K1 = [0.29666309, 0.29330885, 0.29042818, 0.28787125, 0.28555364, 0.28342219,
0.28144091, 0.27958406, 0.27783249, 0.27617149, 0.27458948, 0.27307714,
0.27162685, 0.27023228, 0.26888809, 0.26758976, 0.26633338, 0.26511557,
0.26393339, 0.26278425]
self.K = [[interp(dt, dts, K0)], [interp(dt, dts, K1)]]


def laplacian_pdf(x, mu, b):
b = max(b, 1e-4)
return math.exp(-abs(x-mu)/b)


def match_vision_to_cluster(v_ego, lead, clusters):
# match vision point to best statistical cluster match
offset_vision_dist = lead.x[0] - RADAR_TO_CAMERA

def prob(c):
prob_d = laplacian_pdf(c.dRel, offset_vision_dist, lead.xStd[0])
prob_y = laplacian_pdf(c.yRel, -lead.y[0], lead.yStd[0])
prob_v = laplacian_pdf(c.vRel + v_ego, lead.v[0], lead.vStd[0])

# This is isn't exactly right, but good heuristic
return prob_d * prob_y * prob_v

cluster = max(clusters, key=prob)

# if no 'sane' match is found return -1
# stationary radar points can be false positives
dist_sane = abs(cluster.dRel - offset_vision_dist) < max([(offset_vision_dist)*.25, 5.0])
vel_sane = (abs(cluster.vRel + v_ego - lead.v[0]) < 10) or (v_ego + cluster.vRel > 3)
if dist_sane and vel_sane:
return cluster
else:
return None


def get_lead(v_ego, ready, clusters, lead_msg, low_speed_override=True):
# Determine leads, this is where the essential logic happens
if len(clusters) > 0 and ready and lead_msg.prob > .5:
cluster = match_vision_to_cluster(v_ego, lead_msg, clusters)
else:
cluster = None

lead_dict = {'status': False}
if cluster is not None:
lead_dict = cluster.get_RadarState(lead_msg.prob)
elif (cluster is None) and ready and (lead_msg.prob > .5):
lead_dict = Cluster().get_RadarState_from_vision(lead_msg, v_ego)

if low_speed_override:
low_speed_clusters = [c for c in clusters if c.potential_low_speed_lead(v_ego)]
if len(low_speed_clusters) > 0:
closest_cluster = min(low_speed_clusters, key=lambda c: c.dRel)

# Only choose new cluster if it is actually closer than the previous one
if (not lead_dict['status']) or (closest_cluster.dRel < lead_dict['dRel']):
lead_dict = closest_cluster.get_RadarState()

return lead_dict


class RadarD():
def __init__(self, radar_ts, delay=0):
self.current_time = 0

self.tracks = defaultdict(dict)
self.kalman_params = KalmanParams(radar_ts)

# v_ego
self.v_ego = 0.
self.v_ego_hist = deque([0], maxlen=delay+1)

self.ready = False

def update(self, sm, rr):
self.current_time = 1e-9*max(sm.logMonoTime.values())

if sm.updated['carState']:
self.v_ego = sm['carState'].vEgo
self.v_ego_hist.append(self.v_ego)
if sm.updated['modelV2']:
self.ready = True

ar_pts = {}
for pt in rr.points:
ar_pts[pt.trackId] = [pt.dRel, pt.yRel, pt.vRel, pt.measured]

# *** remove missing points from meta data ***
for ids in list(self.tracks.keys()):
if ids not in ar_pts:
self.tracks.pop(ids, None)

# *** compute the tracks ***
for ids in ar_pts:
rpt = ar_pts[ids]

# align v_ego by a fixed time to align it with the radar measurement
v_lead = rpt[2] + self.v_ego_hist[0]

# create the track if it doesn't exist or it's a new track
if ids not in self.tracks:
self.tracks[ids] = Track(v_lead, self.kalman_params)
self.tracks[ids].update(rpt[0], rpt[1], rpt[2], v_lead, rpt[3])

idens = list(sorted(self.tracks.keys()))
track_pts = [self.tracks[iden].get_key_for_cluster() for iden in idens]

# If we have multiple points, cluster them
if len(track_pts) > 1:
cluster_idxs = cluster_points_centroid(track_pts, 2.5)
clusters = [None] * (max(cluster_idxs) + 1)

for idx in range(len(track_pts)):
cluster_i = cluster_idxs[idx]
if clusters[cluster_i] is None:
clusters[cluster_i] = Cluster()
clusters[cluster_i].add(self.tracks[idens[idx]])
elif len(track_pts) == 1:
# FIXME: cluster_point_centroid hangs forever if len(track_pts) == 1
cluster_idxs = [0]
clusters = [Cluster()]
clusters[0].add(self.tracks[idens[0]])
else:
clusters = []

# if a new point, reset accel to the rest of the cluster
for idx in range(len(track_pts)):
if self.tracks[idens[idx]].cnt <= 1:
aLeadK = clusters[cluster_idxs[idx]].aLeadK
aLeadTau = clusters[cluster_idxs[idx]].aLeadTau
self.tracks[idens[idx]].reset_a_lead(aLeadK, aLeadTau)

# *** publish radarState ***
dat = messaging.new_message('radarState')
dat.valid = sm.all_checks() and len(rr.errors) == 0
radarState = dat.radarState
radarState.mdMonoTime = sm.logMonoTime['modelV2']
radarState.radarErrors = list(rr.errors)
radarState.carStateMonoTime = sm.logMonoTime['carState']

leads_v3 = sm['modelV2'].leadsV3
if len(leads_v3) > 1:
radarState.leadOne = get_lead(self.v_ego, self.ready, clusters, leads_v3[0], low_speed_override=True)
radarState.leadTwo = get_lead(self.v_ego, self.ready, clusters, leads_v3[1], low_speed_override=False)
return dat



# fuses camera and radar data for best lead detection
Expand Down

0 comments on commit 4b3507f

Please sign in to comment.