forked from apache/tvm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Hexagon]Float and quantized dense operators with schedules (apache#1…
…2873) This PR implements dense operators for float types and quantized types. The quantized implementation uses floating point numbers for its intermediate compute type, fixed point will be investigated in the future. float16 accuracy is questionable. Needs further investigation in an actual model (not just a unittest).
- Loading branch information
1 parent
8a0d6d1
commit 76f0f39
Showing
7 changed files
with
654 additions
and
15 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,193 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
"""Schedule for dense operator""" | ||
|
||
from tvm import te, tir | ||
from tvm.topi import tag | ||
from ..utils import get_layout_transform_fn | ||
|
||
|
||
def qdense_compute( | ||
tensor_a, | ||
tensor_b, | ||
zero_a, | ||
scale_a, | ||
zero_b, | ||
scale_b, | ||
zero_out=None, | ||
scale_out=None, | ||
bias=None, | ||
q_dtype=None, | ||
): | ||
"""Hexagon's implementation of a sliced dense operator in Topi. | ||
Uses matmul. | ||
Parameters | ||
---------- | ||
tensor_a : tvm.te.Tensor | ||
data 2-D with shape [batch, in_dim] | ||
tensor_b : tvm.te.Tensor | ||
weight 2-D with shape [in_dim, out_dim] | ||
zero_a : integer | ||
quantization zero point for tensor a. | ||
scale_a : float | ||
quantization scale for tensor a. | ||
zero_b : integer | ||
quantization zero point for tensor b. | ||
scale_b : float | ||
quantization scale for tensor b. | ||
zero_out : Optional[integer] | ||
quantization zero point for output. | ||
scale_out : Optional[float] | ||
quantization scale for output. | ||
bias : Optional[tvm.te.Tensor] | ||
1-D with shape [out_dim] | ||
q_dtype : Optional[str] | ||
The output type. | ||
Returns | ||
------- | ||
mat : tvm.te.Tensor | ||
2-D with shape [batch, out_dim] | ||
""" | ||
if bias is not None: | ||
assert len(bias.shape) == 1 | ||
if q_dtype is None: | ||
q_dtype = tensor_a.dtype | ||
|
||
batch, in_dim = tensor_a.shape | ||
out_dim, red_dim = tensor_b.shape | ||
|
||
# cmp should be done by values | ||
assert int(in_dim) == int(red_dim) | ||
|
||
k = te.reduce_axis((0, in_dim), name="k") | ||
compute_lambda = lambda n, m: te.sum( | ||
scale_a | ||
* (tensor_a[n, k].astype("float32") - zero_a) | ||
* scale_b | ||
* (tensor_b[k, m].astype("float32") - zero_b), | ||
axis=k, | ||
) | ||
compute_name = "qmatmul_sliced" | ||
|
||
out = te.compute( | ||
(batch, out_dim), | ||
compute_lambda, | ||
name=compute_name, | ||
attrs={"layout_free_placeholders": [tensor_b]}, | ||
) | ||
|
||
if bias is not None: | ||
out = te.compute( | ||
(batch, out_dim), | ||
lambda i, j: out[i, j] + bias[j], | ||
tag=tag.BROADCAST, | ||
name="bias", | ||
) | ||
|
||
# Requantization of dense | ||
if scale_out is not None: | ||
out = te.compute( | ||
(batch, out_dim), | ||
lambda *i: (out[i] / scale_out + zero_out).astype(q_dtype), | ||
name="requantize", | ||
) | ||
|
||
return out | ||
|
||
|
||
def qdense_schedule(outs, ins, output_layout: str, input_layout: str): | ||
"""Schedule for dense op. | ||
Parameters | ||
---------- | ||
outs: Array of Tensor | ||
The computation graph description of dense in the format | ||
of an array of tensors. | ||
ins: Array of Tensor | ||
Input tensors into graph. | ||
output_layout: str | ||
Descriptor string for physical layout | ||
input_layout: str | ||
Descriptor string for physical layout | ||
Returns | ||
------- | ||
sch: Schedule | ||
The computation schedule for the op. | ||
""" | ||
if not isinstance(ins, list): | ||
ins = [ins] | ||
if not isinstance(outs, list): | ||
outs = [outs] | ||
|
||
func = te.create_prim_func([*ins, *outs]) | ||
s = tir.Schedule(func) | ||
|
||
matmul = s.get_block("qmatmul_sliced") | ||
try: | ||
requantize = s.get_block("requantize") | ||
except tir.schedule.schedule.ScheduleError: | ||
requantize = None | ||
try: | ||
bias = s.get_block("bias") | ||
except tir.schedule.schedule.ScheduleError: | ||
bias = None | ||
|
||
input_transform_fn = get_layout_transform_fn(input_layout) | ||
output_transform_fn = get_layout_transform_fn(output_layout) | ||
|
||
# Transform input and output buffer | ||
s.transform_layout(matmul, ("read", 0), input_transform_fn) | ||
if requantize is not None: | ||
s.transform_layout(requantize, ("write", 0), output_transform_fn) | ||
elif bias is not None: | ||
s.transform_layout(bias, ("write", 0), output_transform_fn) | ||
else: | ||
s.transform_layout(matmul, ("write", 0), output_transform_fn) | ||
|
||
# Vectorize | ||
_, matmul_c, _ = s.get_loops(matmul) | ||
_, matmul_c_inner = s.split(matmul_c, [None, 128]) | ||
s.vectorize(matmul_c_inner) | ||
|
||
# Compute everything inline | ||
if bias is not None and requantize is not None: | ||
_, bias_c = s.get_loops(bias) | ||
s.compute_at(matmul, bias_c) | ||
_, out_c = s.get_loops(requantize) | ||
s.compute_at(bias, out_c) | ||
elif bias is not None and requantize is None: | ||
_, out_c = s.get_loops(bias) | ||
s.compute_at(matmul, out_c) | ||
|
||
return s |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,144 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
"""Schedule for dense operator""" | ||
|
||
from tvm import te, tir | ||
from tvm.topi import tag | ||
from ..utils import get_layout_transform_fn | ||
|
||
|
||
def dense_compute(tensor_a, tensor_b, bias=None, out_dtype=None): | ||
"""Hexagon's implementation of a sliced dense operator in Topi. | ||
Uses matmul. | ||
Parameters | ||
---------- | ||
tensor_a : tvm.te.Tensor | ||
data 2-D with shape [batch, in_dim] | ||
tensor_b : tvm.te.Tensor | ||
weight 2-D with shape [in_dim, out_dim] | ||
bias : Optional[tvm.te.Tensor] | ||
1-D with shape [out_dim] | ||
out_dtype : Optional[str] | ||
The output type. This is used for mixed precision. | ||
Returns | ||
------- | ||
output : tvm.te.Tensor | ||
2-D with shape [batch, out_dim] | ||
""" | ||
if bias is not None: | ||
assert len(bias.shape) == 1 | ||
if out_dtype is None: | ||
out_dtype = tensor_a.dtype | ||
|
||
batch, in_dim = tensor_a.shape | ||
out_dim, red_dim = tensor_b.shape | ||
|
||
# cmp should be done by values | ||
assert int(in_dim) == int(red_dim) | ||
|
||
k = te.reduce_axis((0, in_dim), name="k") | ||
compute_lambda = lambda n, m: te.sum( | ||
tensor_a[n, k].astype(out_dtype) * tensor_b[k, m].astype(out_dtype), axis=k | ||
) | ||
compute_name = "matmul_sliced" | ||
compute_tag = "matmul" | ||
|
||
mat = te.compute( | ||
(batch, out_dim), | ||
compute_lambda, | ||
name=compute_name, | ||
tag=compute_tag, | ||
attrs={"layout_free_placeholders": [tensor_b]}, | ||
) | ||
|
||
if bias is not None: | ||
mat = te.compute( | ||
(batch, out_dim), | ||
lambda i, j: mat[i, j] + bias[j], | ||
tag=tag.BROADCAST, | ||
name="bias", | ||
) | ||
|
||
return mat | ||
|
||
|
||
def dense_schedule(outs, ins, output_layout: str, input_layout: str): | ||
"""Schedule for dense op. | ||
Parameters | ||
---------- | ||
outs: Array of Tensor | ||
The computation graph description of dense in the format | ||
of an array of tensors. | ||
ins: Array of Tensor | ||
Input tensors into graph. | ||
output_layout: str | ||
Descriptor string for physical layout | ||
input_layout: str | ||
Descriptor string for physical layout | ||
Returns | ||
------- | ||
sch: Schedule | ||
The computation schedule for the op. | ||
""" | ||
if not isinstance(ins, list): | ||
ins = [ins] | ||
if not isinstance(outs, list): | ||
outs = [outs] | ||
|
||
func = te.create_prim_func([*ins, *outs]) | ||
s = tir.Schedule(func) | ||
|
||
matmul = s.get_block("matmul_sliced") | ||
try: | ||
bias = s.get_block("bias") | ||
except tir.schedule.schedule.ScheduleError: | ||
bias = None | ||
|
||
input_transform_fn = get_layout_transform_fn(input_layout) | ||
output_transform_fn = get_layout_transform_fn(output_layout) | ||
|
||
# No bias | ||
if bias is None: | ||
s.transform_layout(matmul, ("read", 0), input_transform_fn) | ||
# s.transform_layout(matmul, ("read", 1), input_transform_fn) | ||
s.transform_layout(matmul, ("write", 0), output_transform_fn) | ||
else: | ||
s.transform_layout(matmul, ("read", 0), input_transform_fn) | ||
s.transform_layout(bias, ("write", 0), output_transform_fn) | ||
|
||
_, matmul_c, _ = s.get_loops(matmul) | ||
_, matmul_c_inner = s.split(matmul_c, [None, 64]) | ||
s.vectorize(matmul_c_inner) | ||
|
||
if bias is not None: | ||
_, bias_c = s.get_loops(bias) | ||
_, bias_c_inner = s.split(bias_c, [None, 64]) | ||
s.vectorize(bias_c_inner) | ||
|
||
return s |
Oops, something went wrong.