Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add script for benchmarking & benchmark results #10

Merged
merged 5 commits into from
Aug 3, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
179 changes: 179 additions & 0 deletions benchmark/perf_others.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,179 @@
# modified from https://github.com/hpcaitech/FastFold/blob/main/benchmark/perf.py
import argparse
import os

import torch
import torch.nn as nn

from fastfold.distributed import init_dap
from fastfold.model.fastnn import Evoformer


def main():

parser = argparse.ArgumentParser(description='Evoformer Standalone Perf Benchmark')
parser.add_argument("--dap-size", default=1, type=int, help='batch size')
parser.add_argument('--batch-size', default=1, type=int, help='batch size')
parser.add_argument('--msa-length', default=128, type=int, help='Sequence Length of MSA')
parser.add_argument('--res-length',
default=256,
type=int,
help='Sequence Length of Residues')
parser.add_argument('--trials', default=50, type=int, help='Number of Trials to Execute')
parser.add_argument('--warmup-trials', default=5, type=int, help='Warmup Trials to discard')
parser.add_argument('--layers',
default=4,
type=int,
help='Evoformer Layers to Execute')
parser.add_argument('--cm', default=256, type=int, help='MSA hidden dimension')
parser.add_argument('--cz', default=128, type=int, help='Pair hidden dimension')
parser.add_argument('--heads', default=8, type=int, help='Number of Multihead Attention heads')
parser.add_argument('--openfold',
action='store_true',
help='Benchmark with Evoformer Implementation from OpenFold.')
parser.add_argument('--openfold-lma',
action='store_true',
help='set use_lma to True in openfold.')
parser.add_argument('--fwd', action='store_true', help='Only execute Fwd Pass.')

args = parser.parse_args()

init_dap(args.dap_size)

precision = torch.bfloat16
if args.dap_size > 1:
# (PyTorch issue) Currently All2All communication does not support the Bfloat16 datatype in PyTorch
precision = torch.float16

if not torch.cuda.is_available():
raise NotImplementedError('Running on CPU is not supported')

torch.manual_seed(42)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(42)

if args.openfold:
from openfold.model.evoformer import EvoformerBlock

class OpenFoldEvoformer(nn.Module):

def __init__(self, d_node, d_pair):
super(OpenFoldEvoformer, self).__init__()
self.d_node = d_node
self.d_pair = d_pair

self.c_hidden_msa_att = int(d_node / 8)
self.c_hidden_pair_att = int(d_pair / 4)

self.EvoformerBlock = EvoformerBlock(c_m=d_node,
c_z=d_pair,
c_hidden_msa_att=self.c_hidden_msa_att,
c_hidden_opm=self.c_hidden_msa_att,
c_hidden_mul=self.d_pair,
c_hidden_pair_att=self.c_hidden_pair_att,
no_heads_msa=8,
no_heads_pair=4,
transition_n=4,
msa_dropout=0.15,
pair_dropout=0.25,
inf=1e9,
eps=1e-10)

def forward(self, node, pair, node_mask, pair_mask):
node, pair = self.EvoformerBlock(node, pair, node_mask, pair_mask, use_lma=args.openfold_lma)
return node, pair

attn_layers = []
for idx in range(0, args.layers):
if args.openfold:
attn_layers.append(OpenFoldEvoformer(d_node=args.cm, d_pair=args.cz))
else:
attn_layers.append(Evoformer(d_node=args.cm, d_pair=args.cz))
attn_layers[idx].cuda()
attn_layers[idx].to(dtype=precision)

start_evt_fwd = []
start_evt_bwd = []
stop_evt_bwd = []
for recorded_trial in range(0, args.trials):
start_evt_fwd.append(torch.cuda.Event(enable_timing=True))
start_evt_bwd.append(torch.cuda.Event(enable_timing=True))
stop_evt_bwd.append(torch.cuda.Event(enable_timing=True))

inputs_node = torch.randn(args.batch_size,
args.msa_length // args.dap_size,
args.res_length,
args.cm,
dtype=precision,
device=torch.device("cuda")).requires_grad_(True)
inputs_pair = torch.randn(args.batch_size,
args.res_length // args.dap_size,
args.res_length,
args.cz,
dtype=precision,
device=torch.device("cuda")).requires_grad_(True)
node_mask = torch.ones((args.batch_size, args.msa_length, args.res_length),
dtype=precision,
device=torch.device("cuda")).requires_grad_(False)
pair_mask = torch.ones((args.batch_size, args.res_length, args.res_length),
dtype=precision,
device=torch.device("cuda")).requires_grad_(False)


total_used_mem_gb = 0
for trial in range(0, args.trials + args.warmup_trials):
layer_inputs = inputs_node, inputs_pair
evt_idx = trial - args.warmup_trials

torch.distributed.barrier()
torch.cuda.synchronize()
torch.cuda.reset_peak_memory_stats()
if evt_idx >= 0:
start_evt_fwd[evt_idx].record()
with torch.set_grad_enabled(not args.fwd):
for lyr_idx in range(0, args.layers):
layer_inputs = attn_layers[lyr_idx].forward(
*layer_inputs,
node_mask,
pair_mask,
)

torch.cuda.synchronize()

if evt_idx >= 0:
start_evt_bwd[evt_idx].record()

if not args.fwd:
s = layer_inputs[0].mean() + layer_inputs[1].mean()
s.backward()

torch.cuda.synchronize()
cur_cost_mem = torch.cuda.max_memory_allocated() / 1024 / 1024 / 1024
total_used_mem_gb += cur_cost_mem
if evt_idx >= 0:
stop_evt_bwd[evt_idx].record()


torch.cuda.synchronize()
elapsed_time_fwd = 0.0
elapsed_time_bwd = 0.0
for evt_idx in range(0, args.trials):
elapsed_time_fwd += start_evt_fwd[evt_idx].elapsed_time(start_evt_bwd[evt_idx])
elapsed_time_bwd += start_evt_bwd[evt_idx].elapsed_time(stop_evt_bwd[evt_idx])

print(
"Input: {:4d}, {:4d}, {:4d}, ({:4d} {:4d}), Fwd Time / Layer: {:.3f} ms, Bwd Time / Layer: {:.3f} ms, Memory cost {:.3f} GB".format(
args.batch_size,
args.msa_length,
args.res_length,
args.cm,
args.cz,
elapsed_time_fwd / (args.trials * args.layers),
elapsed_time_bwd / (args.trials * args.layers),
total_used_mem_gb / (args.trials),
)
)


if __name__ == '__main__':
main()
Loading