Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Parameterization type fixes; use parameters instad of arms where appropriate #2780

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions ax/benchmark/problems/synthetic/hss/jenatton.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@

# pyre-strict

from collections.abc import Mapping
from dataclasses import dataclass
from typing import Optional

Expand All @@ -19,7 +20,6 @@
from ax.core.optimization_config import OptimizationConfig
from ax.core.parameter import ChoiceParameter, ParameterType, RangeParameter
from ax.core.search_space import HierarchicalSearchSpace
from ax.core.types import TParameterization
from pyre_extensions import none_throws


Expand Down Expand Up @@ -60,7 +60,8 @@ class Jenatton(ParamBasedTestProblem):
optimal_value: float = 0.1
_is_constrained: bool = False

def evaluate_true(self, params: TParameterization) -> torch.Tensor:
# pyre-fixme[14]: Inconsistent override
def evaluate_true(self, params: Mapping[str, float | int | None]) -> torch.Tensor:
# pyre-fixme: Incompatible parameter type [6]: In call
# `jenatton_test_function`, for 1st positional argument, expected
# `Optional[float]` but got `Union[None, bool, float, int, str]`.
Expand Down
7 changes: 3 additions & 4 deletions ax/benchmark/runners/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,6 @@
from typing import Any, Union

import torch
from ax.core.arm import Arm

from ax.core.base_trial import BaseTrial, TrialStatus
from ax.core.batch_trial import BatchTrial
Expand Down Expand Up @@ -59,7 +58,7 @@ def __init__(self, search_space_digest: SearchSpaceDigest | None = None) -> None
else:
self.target_fidelity_and_task = {}

def get_Y_true(self, arm: Arm) -> Tensor:
def get_Y_true(self, params: Mapping[str, TParamValue]) -> Tensor:
"""
Return the ground truth values for a given arm.

Expand All @@ -79,7 +78,7 @@ def evaluate_oracle(self, parameters: Mapping[str, TParamValue]) -> ndarray:
at the true utility function (which would be unobserved in reality).
"""
params = {**parameters, **self.target_fidelity_and_task}
return self.get_Y_true(arm=Arm(parameters=params)).numpy()
return self.get_Y_true(params=params).numpy()

@abstractmethod
def get_noise_stds(self) -> Union[None, float, dict[str, float]]:
Expand Down Expand Up @@ -134,7 +133,7 @@ def run(self, trial: BaseTrial) -> dict[str, Any]:

for arm in trial.arms:
# Case where we do have a ground truth
Y_true = self.get_Y_true(arm)
Y_true = self.get_Y_true(arm.parameters)
if noise_stds is None:
# No noise, so just return the true outcome.
Ystds[arm.name] = [0.0] * len(Y_true)
Expand Down
21 changes: 9 additions & 12 deletions ax/benchmark/runners/botorch_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,14 +7,14 @@

import importlib
from abc import ABC, abstractmethod
from collections.abc import Mapping
from dataclasses import dataclass
from typing import Any, Optional, Union

import torch
from ax.benchmark.runners.base import BenchmarkRunner
from ax.core.arm import Arm
from ax.core.search_space import SearchSpaceDigest
from ax.core.types import TParameterization
from ax.core.types import TParamValue
from ax.utils.common.base import Base
from ax.utils.common.equality import equality_typechecker
from ax.utils.common.serialization import TClassDecoderRegistry, TDecoderRegistry
Expand All @@ -41,9 +41,9 @@ class ParamBasedTestProblem(ABC):
negate: bool = False

@abstractmethod
def evaluate_true(self, params: TParameterization) -> Tensor: ...
def evaluate_true(self, params: Mapping[str, TParamValue]) -> Tensor: ...

def evaluate_slack_true(self, params: TParameterization) -> Tensor:
def evaluate_slack_true(self, params: Mapping[str, TParamValue]) -> Tensor:
raise NotImplementedError(
f"{self.__class__.__name__} does not support constraints."
)
Expand Down Expand Up @@ -243,7 +243,7 @@ def __init__(
self.test_problem, ConstrainedBaseTestProblem
)

def get_Y_true(self, arm: Arm) -> Tensor:
def get_Y_true(self, params: Mapping[str, TParamValue]) -> Tensor:
"""
Convert the arm to a tensor and evaluate it on the base test problem.

Expand All @@ -252,18 +252,15 @@ def get_Y_true(self, arm: Arm) -> Tensor:
`modified_bounds` in `BotorchTestProblemRunner.__init__` for details.

Args:
arm: Arm to evaluate. It will be converted to a
params: Parameterization to evaluate. It will be converted to a
`batch_shape x d`-dim tensor of point(s) at which to evaluate the
test problem.

Returns:
A `batch_shape x m`-dim tensor of ground truth (noiseless) evaluations.
"""
X = torch.tensor(
[
value
for _key, value in [*arm.parameters.items()][: self.test_problem.dim]
],
[value for _key, value in [*params.items()][: self.test_problem.dim]],
dtype=torch.double,
)

Expand Down Expand Up @@ -322,13 +319,13 @@ def __init__(
)
self.test_problem: ParamBasedTestProblem = self.test_problem

def get_Y_true(self, arm: Arm) -> Tensor:
def get_Y_true(self, params: Mapping[str, TParamValue]) -> Tensor:
"""Evaluates the test problem.

Returns:
A `batch_shape x m`-dim tensor of ground truth (noiseless) evaluations.
"""
Y_true = self.test_problem.evaluate_true(arm.parameters).view(-1)
Y_true = self.test_problem.evaluate_true(params).view(-1)
# `ParamBasedTestProblem.evaluate_true()` does not negate the outcome
if self.test_problem.negate:
Y_true = -Y_true
Expand Down
8 changes: 5 additions & 3 deletions ax/benchmark/runners/surrogate.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,11 +6,11 @@
# pyre-strict

import warnings
from collections.abc import Mapping
from typing import Any, Callable, Optional, Union

import torch
from ax.benchmark.runners.base import BenchmarkRunner
from ax.core.arm import Arm
from ax.core.base_trial import BaseTrial, TrialStatus
from ax.core.observation import ObservationFeatures
from ax.core.search_space import SearchSpace, SearchSpaceDigest
Expand Down Expand Up @@ -95,11 +95,13 @@ def datasets(self) -> list[SupervisedDataset]:
def get_noise_stds(self) -> Union[None, float, dict[str, float]]:
return self.noise_stds

def get_Y_true(self, arm: Arm) -> Tensor:
# pyre-fixme[14]: Inconsistent override
def get_Y_true(self, params: Mapping[str, float | int]) -> Tensor:
# We're ignoring the uncertainty predictions of the surrogate model here and
# use the mean predictions as the outcomes (before potentially adding noise)
means, _ = self.surrogate.predict(
observation_features=[ObservationFeatures(arm.parameters)]
# pyre-fixme[6]: params is a Mapping, but ObservationFeatures expects a Dict
observation_features=[ObservationFeatures(params)]
)
means = [means[name][0] for name in self.outcome_names]
return torch.tensor(
Expand Down
12 changes: 6 additions & 6 deletions ax/benchmark/tests/runners/test_botorch_test_problem.py
Original file line number Diff line number Diff line change
Expand Up @@ -124,11 +124,8 @@ def test_synthetic_runner(self) -> None:

with self.subTest(f"test `get_Y_true()`, {test_description}"):
X = torch.rand(1, 6, dtype=torch.double)
arm = Arm(
name="0_0",
parameters={f"x{i}": x.item() for i, x in enumerate(X.unbind(-1))},
)
Y = runner.get_Y_true(arm=arm)
params = {f"x{i}": x.item() for i, x in enumerate(X.unbind(-1))}
Y = runner.get_Y_true(params=params)
if modified_bounds is not None:
X_tf = normalize(
X, torch.tensor(modified_bounds, dtype=torch.double).T
Expand All @@ -152,11 +149,14 @@ def test_synthetic_runner(self) -> None:
torch.Size([2]), X.pow(2).sum().item(), dtype=torch.double
)
self.assertTrue(torch.allclose(Y, expected_Y))
oracle = runner.evaluate_oracle(parameters=arm.parameters)
oracle = runner.evaluate_oracle(parameters=params)
self.assertTrue(np.equal(Y.numpy(), oracle).all())

with self.subTest(f"test `run()`, {test_description}"):
trial = Mock(spec=Trial)
# pyre-fixme[6]: Incomptabile parameter type: params is a
# mutable subtype of the type expected by `Arm`.
arm = Arm(name="0_0", parameters=params)
trial.arms = [arm]
trial.arm = arm
trial.index = 0
Expand Down
7 changes: 3 additions & 4 deletions ax/benchmark/tests/test_benchmark_problem.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,6 @@

from ax.benchmark.benchmark_problem import BenchmarkProblem, create_problem_from_botorch
from ax.benchmark.runners.botorch_test import BotorchTestProblemRunner
from ax.core.arm import Arm
from ax.core.objective import MultiObjective, Objective
from ax.core.optimization_config import (
MultiObjectiveOptimizationConfig,
Expand Down Expand Up @@ -119,15 +118,15 @@ def _test_multi_fidelity_or_multi_task(self, fidelity_or_task: str) -> None:
search_space=SearchSpace(parameters),
num_trials=3,
)
arm = Arm(parameters={"x0": 1.0, "x1": 0.0, "x2": 0.0})
params = {"x0": 1.0, "x1": 0.0, "x2": 0.0}
at_target = assert_is_instance(
Branin()
.evaluate_true(torch.tensor([1.0, 0.0], dtype=torch.double).unsqueeze(0))
.item(),
float,
)
self.assertAlmostEqual(
problem.runner.evaluate_oracle(parameters=arm.parameters)[0],
problem.runner.evaluate_oracle(parameters=params)[0],
at_target,
)
# first term: (-(b - 0.1) * (1 - x3) + c - r)^2
Expand All @@ -136,7 +135,7 @@ def _test_multi_fidelity_or_multi_task(self, fidelity_or_task: str) -> None:
t = -5.1 / (4 * math.pi**2) + 5 / math.pi - 6
expected_change = (t + 0.1) ** 2 - t**2
self.assertAlmostEqual(
problem.runner.get_Y_true(arm=arm).item(),
problem.runner.get_Y_true(params=params).item(),
at_target + expected_change,
)

Expand Down