Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Black version 23.1 format updates #1110

Merged
merged 1 commit into from
Feb 1, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,6 @@ def construct_envs(
for i in range(num_environments):
proc_config = config.copy()
with read_write(proc_config):

task_config = proc_config.habitat
task_config.seed = task_config.seed + i
if len(scenes) > 0:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -785,7 +785,6 @@ def calculate_zfactor(
def forward(
self, batch: torch.Tensor, is_depth: bool = False
) -> torch.Tensor:

# Depth conversion for input tensors
if is_depth and self.input_zfactor is not None:
input_b = batch.size()[0] // self.input_len
Expand Down Expand Up @@ -931,7 +930,6 @@ def transform_observation_space(
def forward(
self, observations: Dict[str, torch.Tensor]
) -> Dict[str, torch.Tensor]:

for i, target_sensor_uuid in enumerate(self.target_uuids):
# number of input and input sensor uuids
in_len = self.converter.input_len
Expand Down Expand Up @@ -1185,7 +1183,6 @@ def __init__(

@classmethod
def from_config(cls, config):

if hasattr(config, "target_uuids"):
# Optional Config Value to specify target uuid
target_uuids = config.target_uuids
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,6 @@ def __init__(
numsteps + 1, num_envs, *action_shape
)
if discrete_actions:

assert isinstance(self.buffers["actions"], torch.Tensor)
assert isinstance(self.buffers["prev_actions"], torch.Tensor)
self.buffers["actions"] = self.buffers["actions"].long()
Expand Down
1 change: 0 additions & 1 deletion habitat-baselines/habitat_baselines/il/data/data.py
Original file line number Diff line number Diff line change
Expand Up @@ -111,7 +111,6 @@ def __init__(
self.scene_episode_dict[scene],
desc="Saving episode frames for each scene",
):

if self.only_vqa_task:
pos_queue = episode.shortest_paths[0][
-self.num_frames : # noqa: E203
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -98,7 +98,6 @@ def save_frames(self, pos_queue: List[ShortestPathPoint]) -> None:
"""

for pos in pos_queue:

observation = self.env.sim.get_observations_at(
pos.position, pos.rotation
)
Expand Down
1 change: 0 additions & 1 deletion habitat-baselines/habitat_baselines/il/data/nav_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -280,7 +280,6 @@ def preprocess_actions(self) -> None:
0 - NULL; 1 - START; 2 - FWD; 3 - LEFT; 4 - RIGHT; 5 - STOP;
"""
for ep in self.episodes:

ep.actions = [x.action + 2 for x in ep.shortest_paths[0]]
ep.action_length = len(ep.actions)
(
Expand Down
2 changes: 0 additions & 2 deletions habitat-baselines/habitat_baselines/il/metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,6 @@ def update(self, values: List) -> None:
self.stats.append(copy.deepcopy(current_stats))

def get_stat_string(self, mode: int = 1) -> str:

stat_string = ""

for k, v in self.info.items():
Expand All @@ -88,7 +87,6 @@ def get_stats(self, mode: int = 1) -> List[float]:
return stats

def dump_log(self) -> bool:

if self.log_json is None:
return False

Expand Down
5 changes: 0 additions & 5 deletions habitat-baselines/habitat_baselines/il/models/models.py
Original file line number Diff line number Diff line change
Expand Up @@ -325,7 +325,6 @@ def __init__(
def forward(
self, images: Tensor, questions: Tensor
) -> Tuple[Tensor, Tensor]:

N, T, _, _, _ = images.size()
# bs x 5 x 3 x 256 x 256
img_feats = self.cnn(
Expand Down Expand Up @@ -446,7 +445,6 @@ def forward(
controller_actions_in: Tensor,
controller_action_lengths: Tensor,
) -> Tuple[Tensor, Tensor, Tensor]:

N_p, T_p, _ = planner_img_feats.size()

planner_img_feats = self.cnn_fc_layer(planner_img_feats)
Expand Down Expand Up @@ -528,7 +526,6 @@ def planner_step(
def controller_step(
self, img_feats: Tensor, actions_in: Tensor, hidden_in: Tensor
) -> Tensor:

img_feats = self.cnn_fc_layer(img_feats)
actions_embed = self.planner_nav_rnn.action_embed(actions_in)

Expand Down Expand Up @@ -647,7 +644,6 @@ def forward(
action_lengths: Tensor,
hidden: bool = False,
) -> Union[Tuple[Tensor, Tensor], Tuple[Tensor, Tensor, Tensor]]:

T: Union[int, bool] = False
if self.image_input is True:
N, T, _ = img_feats.size()
Expand Down Expand Up @@ -695,7 +691,6 @@ def step_forward(
actions_in: Tensor,
hidden: HiddenState,
) -> Tuple[Tensor, Tensor]:

T: Union[bool, int] = False
if self.image_input is True:
N, T, _ = img_feats.size()
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -268,7 +268,6 @@ def _eval_checkpoint(
% config.habitat_baselines.il.eval_save_results_interval
== 0
):

result_id = "ckpt_{}_{}".format(
checkpoint_index, idx[0].item()
)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,6 @@ def _save_nav_results(
writer: TensorboardWriter,
video_option: list,
) -> None:

r"""For saving NAV-PACMAN eval results.
Args:
ckpt_path: path of checkpoint being evaluated
Expand Down Expand Up @@ -444,7 +443,6 @@ def _eval_checkpoint(
)

for step in range(planner_actions_in.size(0)):

(
planner_scores,
planner_hidden,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,6 @@ def _save_vqa_results(
q_vocab_dict: VocabDict,
ans_vocab_dict: VocabDict,
) -> None:

r"""For saving VQA results.
Args:
ckpt_idx: idx of checkpoint being evaluated
Expand Down Expand Up @@ -395,7 +394,6 @@ def _eval_checkpoint(
% config.habitat_baselines.il.eval_save_results_interval
== 0
):

self._save_vqa_results(
checkpoint_index,
episode_ids,
Expand Down
1 change: 1 addition & 0 deletions habitat-baselines/habitat_baselines/rl/ddppo/algo/ddppo.py
Original file line number Diff line number Diff line change
Expand Up @@ -98,6 +98,7 @@ def init_distributed(self, find_unused_params: bool = True) -> None:
forward pass, otherwise the gradient reduction
will not work correctly.
"""

# NB: Used to hide the hooks from the nn.Module,
# so they don't show up in the state_dict
class Guard: # noqa: SIM119
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -172,7 +172,6 @@ def act(
masks,
deterministic=False,
):

self._high_level_policy.apply_mask(masks) # type: ignore[attr-defined]

should_terminate: torch.BoolTensor = torch.zeros(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,6 @@ def on_enter(
def _is_skill_done(
self, observations, rnn_hidden_states, prev_actions, masks, batch_idx
) -> torch.BoolTensor:

cur_resting_pos = observations[RelativeRestingPositionSensor.cls_uuid]

did_leave_start_zone = (
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@ class BoxActionEmbedding(nn.Module):
x = (a - low) / (high - low). This assumes that the bounds
in the action space are tight
"""

# NeRF style sinusoidal embedding for continuous actions
def __init__(self, action_space: gym.spaces.Box, dim_per_action: int = 32):
super().__init__()
Expand Down Expand Up @@ -113,7 +114,6 @@ def __init__(self, action_space: ActionSpace, dim_per_action: int = 32):
)
self.embedding_slices.append(slice(0, 1))
else:

ptr = 0
for space in iterate_action_space_recursively(action_space):
if isinstance(space, gym.spaces.Box):
Expand Down
2 changes: 0 additions & 2 deletions habitat-baselines/habitat_baselines/rl/ppo/ppo.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,6 @@ def __init__(
entropy_target_factor: float = 0.0,
use_adaptive_entropy_pen: bool = False,
) -> None:

super().__init__()

self.actor_critic = actor_critic
Expand Down Expand Up @@ -159,7 +158,6 @@ def update(
self,
rollouts: RolloutStorage,
) -> Dict[str, float]:

advantages = self.get_advantages(rollouts)

learner_metrics = collections.defaultdict(list)
Expand Down
1 change: 0 additions & 1 deletion habitat-baselines/habitat_baselines/rl/ver/queue.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,6 @@ def get_many(
return msgs

def put_many(self, xs, block=True, timeout=10.0):

t_start = time.perf_counter()
n_put = 0
for x in xs:
Expand Down
1 change: 0 additions & 1 deletion habitat-baselines/habitat_baselines/rl/ver/ver_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -383,7 +383,6 @@ def _update_agent(self):
ppo_cfg = self.config.habitat_baselines.rl.ppo

with self.timer.avg_time("learn"):

t_compute_returns = time.perf_counter()

with self.timer.avg_time("compute returns"), inference_mode():
Expand Down
1 change: 0 additions & 1 deletion habitat-lab/habitat/core/dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -194,7 +194,6 @@ def get_episode_iterator(self, *args: Any, **kwargs: Any) -> Iterator[T]:
return EpisodeIterator(self.episodes, *args, **kwargs)

def to_json(self) -> str:

result = DatasetJSONEncoder().encode(self)
return result

Expand Down
1 change: 0 additions & 1 deletion habitat-lab/habitat/core/embodied_task.py
Original file line number Diff line number Diff line change
Expand Up @@ -261,7 +261,6 @@ def __init__(
self._is_episode_active = False

def _init_entities(self, entities_configs, register_func) -> OrderedDict:

entities = OrderedDict()
for entity_name, entity_cfg in entities_configs.items():
entity_cfg = OmegaConf.create(entity_cfg)
Expand Down
1 change: 0 additions & 1 deletion habitat-lab/habitat/core/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -143,7 +143,6 @@ class DatasetFloatJSONEncoder(DatasetJSONEncoder):
# Overriding method to inject own `_repr` function for floats with needed
# precision.
def iterencode(self, o, _one_shot=False):

markers: Optional[Dict] = {} if self.check_circular else None
if self.ensure_ascii:
_encoder = encode_basestring_ascii
Expand Down
1 change: 0 additions & 1 deletion habitat-lab/habitat/datasets/vln/r2r_vln_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,6 @@ def __init__(self, config: Optional["DictConfig"] = None) -> None:
def from_json(
self, json_str: str, scenes_dir: Optional[str] = None
) -> None:

deserialized = json.loads(json_str)
self.instruction_vocab = VocabDict(
word_list=deserialized["instruction_vocab"]["word_list"]
Expand Down
3 changes: 2 additions & 1 deletion habitat-lab/habitat/robots/manipulator.py
Original file line number Diff line number Diff line change
Expand Up @@ -181,7 +181,8 @@ def update(self) -> None:

def reset(self) -> None:
"""Reset the joints on the existing robot.
NOTE: only arm and gripper joint motors (not gains) are reset by default, derived class should handle any other changes."""
NOTE: only arm and gripper joint motors (not gains) are reset by default, derived class should handle any other changes.
"""
self.sim_obj.clear_joint_states()
self.arm_joint_pos = self.params.arm_init_params
self._fix_joint_values = None
Expand Down
3 changes: 2 additions & 1 deletion habitat-lab/habitat/robots/mobile_manipulator.py
Original file line number Diff line number Diff line change
Expand Up @@ -152,6 +152,7 @@ def update(self) -> None:

def reset(self) -> None:
"""Reset the joints on the existing robot.
NOTE: only arm and gripper joint motors (not gains) are reset by default, derived class should handle any other changes."""
NOTE: only arm and gripper joint motors (not gains) are reset by default, derived class should handle any other changes.
"""
Manipulator.reset(self)
RobotBase.reset(self)
1 change: 0 additions & 1 deletion habitat-lab/habitat/robots/robot_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -226,7 +226,6 @@ def is_base_link(self, link_id: int) -> bool:
)

def update_base(self, rigid_state, target_rigid_state):

end_pos = self._sim.step_filter(
rigid_state.translation, target_rigid_state.translation
)
Expand Down
3 changes: 2 additions & 1 deletion habitat-lab/habitat/robots/static_manipulator.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,5 +96,6 @@ def update(self) -> None:

def reset(self) -> None:
"""Reset the joints on the existing robot.
NOTE: only arm and gripper joint motors (not gains) are reset by default, derived class should handle any other changes."""
NOTE: only arm and gripper joint motors (not gains) are reset by default, derived class should handle any other changes.
"""
Manipulator.reset(self)
2 changes: 0 additions & 2 deletions habitat-lab/habitat/tasks/nav/instance_image_nav_task.py
Original file line number Diff line number Diff line change
Expand Up @@ -200,7 +200,6 @@ def get_observation(
episode: InstanceImageGoalNavEpisode,
**kwargs: Any,
) -> Optional[VisualObservation]:

if len(episode.goals) == 0:
logger.error(
f"No goal specified for episode {episode.episode_id}."
Expand Down Expand Up @@ -243,7 +242,6 @@ def _get_sensor_type(self, *args: Any, **kwargs: Any):
def get_observation(
self, *args: Any, episode: InstanceImageGoalNavEpisode, **kwargs: Any
) -> np.ndarray:

if len(episode.goals) == 0:
logger.error(
f"No goal specified for episode {episode.episode_id}."
Expand Down
1 change: 0 additions & 1 deletion habitat-lab/habitat/tasks/nav/nav.py
Original file line number Diff line number Diff line change
Expand Up @@ -752,7 +752,6 @@ def _draw_goals_view_points(self, episode):

def _draw_goals_positions(self, episode):
if self._config.draw_goal_positions:

for goal in episode.goals:
if self._is_on_same_floor(goal.position[1]):
try:
Expand Down
1 change: 0 additions & 1 deletion habitat-lab/habitat/tasks/nav/object_nav_task.py
Original file line number Diff line number Diff line change
Expand Up @@ -152,7 +152,6 @@ def get_observation(
episode: ObjectGoalNavEpisode,
**kwargs: Any,
) -> Optional[np.ndarray]:

if len(episode.goals) == 0:
logger.error(
f"No goal specified for episode {episode.episode_id}."
Expand Down
1 change: 0 additions & 1 deletion habitat-lab/habitat/tasks/nav/shortest_path_follower.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,6 @@ def __init__(
return_one_hot: bool = True,
stop_on_error: bool = True,
):

self._return_one_hot = return_one_hot
self._sim = sim
self._goal_radius = goal_radius
Expand Down
1 change: 0 additions & 1 deletion habitat-lab/habitat/tasks/rearrange/actions/actions.py
Original file line number Diff line number Diff line change
Expand Up @@ -329,7 +329,6 @@ def _set_robot_state(self, set_dat):
self.cur_robot.sim_obj.joint_forces = set_dat["pos"]

def update_base(self):

ctrl_freq = self._sim.ctrl_freq

before_trans_state = self._capture_robot_state()
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -193,7 +193,6 @@ def init_task(
should_reset: bool = True,
add_task_kwargs: Optional[Dict[str, Any]] = None,
) -> RearrangeTask:

rearrange_logger.debug(
f"Loading task {self._task_info.task} with definition {self._task_info.task_def}"
)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -83,7 +83,6 @@ def _generate_nav_start_goal(self, episode, force_idx=None) -> NavToInfo:
# Select an object at random and navigate to that object.
all_pos = self._sim.get_target_objs_start()
if force_idx is None:

nav_to_pos = all_pos[np.random.randint(0, len(all_pos))]
else:
nav_to_pos = all_pos[force_idx]
Expand Down
1 change: 0 additions & 1 deletion test/test_baselines_hydra.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,6 @@ def my_app_compose_api() -> "DictConfig":
# This is needed for apps that cannot have
# a standard @hydra.main() entry point
with initialize(version_base=None):

cfg = compose(
overrides=[
"+habitat_baselines=habitat_baselines_rl_config_base",
Expand Down
1 change: 0 additions & 1 deletion test/test_habitat_sim.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,6 @@ def test_sim_trajectory():
with open("test/data/habitat-sim_trajectory_data.json", "r") as f:
test_trajectory = json.load(f)
with init_sim() as sim:

sim.reset()
sim.set_agent_state(
position=test_trajectory["positions"][0],
Expand Down
1 change: 0 additions & 1 deletion test/test_mp3d_eqa.py
Original file line number Diff line number Diff line change
Expand Up @@ -103,7 +103,6 @@ def test_mp3d_eqa_dataset():

@pytest.mark.parametrize("split", ["train", "val"])
def test_dataset_splitting(split):

dataset_config = get_config(CFG_TEST).habitat.dataset
with habitat.config.read_write(dataset_config):
dataset_config.split = split
Expand Down
1 change: 0 additions & 1 deletion test/test_pyrobot.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,6 @@ def test_pyrobot(mocker):
_try_register_pyrobot()

with make_sim("PyRobot-v0", config=PyrobotConfig()) as reality:

_ = reality.reset()
_ = reality.step(
"go_to_relative",
Expand Down
Loading