-
Notifications
You must be signed in to change notification settings - Fork 6
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Fix occasionally freezing USB OHCI #2
Comments
Does Linux now have its own equivalent to USBD? If not, what USBD module did you use? If you have been using a homebrew module and if it was from before late 2014, please upgrade. |
What is the USBD? At the moment I am using
The Linux USB OHCI driver manipulates the HCD registers directly via There is also a mysterious USB OHCI support is required for an initial Linux kernel submission, see #1. Unfortunately it brings significant complexity with its dependency on IOP infrastructure, including IOP memory allocations. |
USBD.IRX is the USB HCD Driver for the PlayStation 2. I don't know what PS2Linux uses because I never heard of it having its own USB driver, so I presumed that the official PS2Linux involved USBD.IRX. So does this use the standard Linux OHCI driver? There is also a need to ensure that the hardware errata is properly handled. DPCR2 is the DMA Primary Control Register 2, which is used to control the DMA channels of the 2nd DMA controller. The PlayStation 2 IOP has 3 DMACs. |
Yes, the Linux kernel manipulates the HCD registers directly from the EE, as for all other kinds of USB OHCI hardware, and it does not use
I have been told that there is an erratum about storing unaligned USB frames that are 63 or 64 bytes in length. However, I believe that the Linux USB OHCI buffers are always aligned, so this particular problem should not be a concern. Would you be able to provide other known errata? Also, the USB OHCI bounce buffer is a grave limitation, as noted in #17. Thanks for explaining the DPCR2! The DMA channels eventually need to be documented in the Linux kernel source code. |
USBD provides APIs for registering Logical Device Drivers (LDD), managing transfers to USB devices, managing USB devices and linking with a USB LDD Autoloader. For more information, you should refer to the official documentation. Yes, the difficulty with transferring 63/64-byte frames from an unaligned buffer is the only known errata. You need to ensure that the buffers on the IOP side are aligned. The available documentation of all the DMA channels is not very complete as the controllers are proprietary. But most of the channels are known.
There is a large topic on the busses and the SSBUSC service as well: https://assemblergames.com/threads/the-playstation-2-busses-dev9.67961/ |
Hmm... To proceed with the USBD we need to somehow adapt its services to the Linux kernel USB host driver stack, at a suitable level of abstraction. Does the USBD transfer data via SIF DMA, thereby avoiding IOP memory constraints? Ethernet support, as in #19, would simplify development of a Linux kernel USBD adapter. The question remains, though, why the current interrupt relay method fails. Of course, there may be an underlying problem, perhaps related to the EE manipulating USB OHCI registers directly. It would be interesting to figure out what kind of state the OHCI hardware gets stuck in, and trace the series of register manipulations leading up to that point. The failure is easily reproducible. However, I am not an expert on the details of the USB OHCI.
Do you have links, code or other sources describing the USBD? |
No, it does not involve the SIF on its own as it is an IOP module. 2MB is more than sufficient, if used properly. The 256KB limit you mentioned before, is a Linux thing. You can refer to the USBD module source from the homebrew PS2SDK. But only the Sony documentation is most complete. You might want to establish whether it is a problem with the USB driver itself or if it is a problem with relaying the interrupt. The latter is less related to USB. |
USB wireless networking devices want huge buffers to operate efficiently. I assume that additional IOP drivers for hard disks, sound, i.LINK, Ethernet etc. will claim a significant amount of IOP memory for code if not for their buffers. 😁
The Linux USB OHCI subsystem is used by many millions of computers, so presumably it works well unless there is a problem with the hardware, or in this particular case the interrupt relay. |
Unless you do all your processing on the IOP, you probably would not need large buffers. I know that you could possibly reach higher speeds with larger buffers and some devices, but the PS2 was not a console with a lot of memory. Data is read and kept in RAM, only as needed. What I have done (and what @rickgaiser did) for the SMAP, was to maintain a ring buffer on the IOP for transfers to the EE. If you are convinced that the problem is with how interrupts are routed, then you should not implement workarounds that involve changing the way the USB OHCI driver work. You could be just masking the true problem. If it is not already done and you would like to, it is also possible to route interrupts by getting the IOP to trigger the EE-side SBUS interrupt from the IOP, after setting the MSFLAG/SMFLAG bits. The SBUS SMFLAG (sub to main)/MSFLAG (main to sub) register is set by the remote CPU, but cleared when the local CPU writes. These SIF registers can be used to indicate the interrupt cause. If Linux will not expose or share the SBUS registers and interrupt with other software, then you are free to use it as desired. This could be an even lighter implementation than using SIFCMD. |
That is true. For the PlayStation 2, I think, the problem is not primarily loss of speed but the fact that many useful Linux USB devices will not work unless their drivers are patched to consume much less memory. As an example, commit 0b3a20c reduces the (hard-coded) memory requirements for wireless rt2x00 devices. They refuse to operate otherwise, which is less than ideal for users plugging in their favourite devices expecting them work. The mass-storage device driver apparently busy-waits to claim the memory it desires. Of course, attaching several USB devices increases memory pressure.
That sounds like a reasonable thing to do for PlayStation 2 specific devices. 😄
Hopefully the true root cause will be identified, eventually, and a proper fix can be implemented. Meanwhile, the current USB OHCI workaround is provisional and designed for system usability.
Hmm... these two approaches sound exactly like ones already described and tested negative in this issue? Maybe I have misunderstood something? Also, Ethernet, for example, seemingly continues to operate perfectly even when USB fails, suggesting that the problem is not a failure of the relay channel in the case of SIF RPC. I suspect that the OHCI interrupt is lost or perhaps not even asserted on the IOP side, for whatever reason. |
It seems that your buffer allocation allocates IOP memory. Why not allocate memory on the EE (which Linux deals with anyway), and use your own code to copy data from the IOP into it? The real sizes of the buffers you use on the IOP do not have to be revealed to Linux. |
That is essentially already implemented. The current Linux USB OHCI driver allocates both IOP and EE memory. When OHCI DMA transfers to IOP memory finish, the EE copies the transferred data from IOP memory to EE memory, and vice versa. This is the bounce buffer part of the driver.
This seems to require that large USB transactions are split into multiple smaller transactions? That appears to be nontrivial to me, since it seems to require an intermediate USB OHCI subsystem layer to somehow arbitrate between the different buffer sizes. The OHCI DMA registers can only handle small transfers, for example, which implies that the Linux USB OHCI subsystem can no longer write these registers directly. A whole new set of transfer queues need to be managed too? As an alternative, I have noticed that the PlayStation 2 hardware has a concept of chaining several DMA controllers, especially via the SIF, avoiding IOP and EE processing overhead for common use cases. This is described in the manuals, but it is not entirely clear to me whether the OHCI DMA controller can chain with the SIF, as suggested in #17. This would not only solve the memory problems, it would also be much more efficient. |
Technically, USB transfers are limited to 4KB. This is because we use USB 1.1. I never heard of a hardware function of the PS2 that allowed the output of one channel to be connected to another. If we could do that, then it would be much easier to achieve full 100Mbit Ethernet performance. Another things you can check for, is whether the buffers on the EE side are aligned properly and the cache lines are flushed as required. If the wrong data is sent or data is corrupted because of a cache coherency problem, then that could explain the rather uncommon crash. I mention this because the EE's DMA channels require 16-byte alignment and data must be transferred in units of 16. However, the cache lines are 64-bytes long, so DMA addresses should have 64-byte alignment if the cache lines are written back. It is also a better practice to not mix cached and uncached accesses. |
Perhaps it is somehow possible proceed with this, although using bounce buffers in the Linux USB OHCI driver is already frowned upon, as this approach to handling these buffers appears to be unmaintained. Hmm. Special things need to be done anyway, eventually, especially to achieve anything that is low overhead and high performance. For an initial Linux kernel submission, as in #1, it is best to keep things as simple as possible. Kernel maintainers are not happy to review large pieces of complex code. 😁
Indeed. This involves a DMATag concept. Sony EE Overview, version 6.0, section 2.6, SIF: Sub-CPU Interface, page 47, says that: The IOP-DMAC reads the IOP memory address and data size from the tag, and transmits the packet with its tag to the SIF. The EE-DMAC reads the packet from the SIF, interprets the first word as a tag, reads the EE memory address and data size from the tag, and decompresses the data to the specified memory address. These transfer operations are performed by the DMACs to avoid generating unnecessary interrupts of the CPU. Furthermore, Sony EE User's Manual, version 6.0, chapter 5, DMAC: DMA Controller, page 41, says that: In some of the channels, Chain mode is available. This mode performs processing such as transfer address switching according to the tag in the transfer data. This allows data to be exchanged between two or more processors through the mediation of the main memory, not the CPU. I was unable to recall the specific example I was looking for, with chained DMA transfers from the IOP to the GS via the SIF and the IPU, or somesuch, but I have the impression that these DMA chaining modes are flexible at enabling fairly long and complex chains, including stall-control. Mastering DMA chaining is obviously crucial to achieving low overhead and high performance data transfers between the various peripherals and processors of the PlayStation 2. 😄
DMA is not used on the EE side. IOP memory is copied to/from EE memory using the R5900. This is obviously very inefficient, but appears to work as intended.
The problem is a freeze rather than a crash. An expected interrupt is occasionally lost, in the order of one interrupt in a million. As explained in the issue description, the freeze vanishes if the Linux OHCI driver is hammered with an additional excessive 1000 Hz timer interrupt. |
You seem to be referring to the DMA tag function of the SIF. The EE's DMAC is connected to various devices, which includes the IOP's DMAC via SIF0, SIF1 and SIF2. SIF2 is also the PS GPU DMA channel. The EE and IOP software communicate via the three SIF DMA channels. Not all DMA channels support tags and it does not seem like there is a function to connect the output of one to the input of another in software. Even if you copy data to/from the EE via the IOP RAM window, you still need to write back the cache in my experience. Anyway, all the best to you with finding the root cause. It is starting to sound like some timing problem. |
Yes, a timing issue is a plausible cause. Another one could to be that a series of USB OHCI register writes does not come through as intended, or suchlike. |
Precisely. The best approach to low overhead and high performance USB OHCI data transfers is a topic of #17.
Indeed. I should mention that I am not aware of any Linux USB OHCI data corruption. I have transferred hundreds of gigabytes to verify this.
Many thanks! |
I do not mean that you will surely get corruption of the payload. Although OHCI meant that most processing will be done by the hardware, the software driver will still generate data for the hardware to use, in the form of commands. So if the wrong data is made available to the hardware, you can get undefined behaviour. But no matter, this might not be the problem after all. Have you taken a look at the source code for the homebrew USBD copy? In 2014, I attempted to fix some of its problems by comparing various parts against the late Sony version. |
I have taken a brief look at the USBD. Admittedly, I am not very familiar with HCD details in general.
Unexpected fiddling with the MIE is a strong indication of hardware problems, in my view. This workaround was apparently ported to the Linux HCD many years ago. The precise details of the problem seem to be lost.
Thanks, that was very helpful! Perhaps this MIE workaround is the best we can hope for, and so we should conclude this issue? It does seem to work well in practice. |
The fix, if it was one, was made by Sony. Which is why there is no explanation for what it does. If you are going to add these fixes, you might as well do it completely. You should add all their fixes, even though we do not know why they were done. The inline assembly code loads a word from the boot ROM segment. Although the IOP is 32-bit, I wrote a 64-bit sign-extended address to work around a bug in our IOP assembler. |
Are you aware of additional fixes for the USB OHCI, apart from the MIE fix and the frame alignment fix already mentioned?
I will attempt to explain the MIE fixes below. We can double-check this with Linux kernel developers later.
I take it you refer to this piece of code in ps2dev/ps2sdk@6aa81f7:
I suspect that the LW instruction above acts as a crude barrier, perhaps for ordering. The corresponding Linux HCD fix is simply:
The MIE will apparently be enabled at a later point, which is probably why it is not toggled here. Also, I suppose that |
[ Upstream commit a843dc4 ] In func check_6rd,tunnel->ip6rd.relay_prefixlen may equal to 32,so UBSAN complain about it. UBSAN: Undefined behaviour in net/ipv6/sit.c:781:47 shift exponent 32 is too large for 32-bit type 'unsigned int' CPU: 6 PID: 20036 Comm: syz-executor.0 Not tainted 4.19.27 #2 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0xca/0x13e lib/dump_stack.c:113 ubsan_epilogue+0xe/0x81 lib/ubsan.c:159 __ubsan_handle_shift_out_of_bounds+0x293/0x2e8 lib/ubsan.c:425 check_6rd.constprop.9+0x433/0x4e0 net/ipv6/sit.c:781 try_6rd net/ipv6/sit.c:806 [inline] ipip6_tunnel_xmit net/ipv6/sit.c:866 [inline] sit_tunnel_xmit+0x141c/0x2720 net/ipv6/sit.c:1033 __netdev_start_xmit include/linux/netdevice.h:4300 [inline] netdev_start_xmit include/linux/netdevice.h:4309 [inline] xmit_one net/core/dev.c:3243 [inline] dev_hard_start_xmit+0x17c/0x780 net/core/dev.c:3259 __dev_queue_xmit+0x1656/0x2500 net/core/dev.c:3829 neigh_output include/net/neighbour.h:501 [inline] ip6_finish_output2+0xa36/0x2290 net/ipv6/ip6_output.c:120 ip6_finish_output+0x3e7/0xa20 net/ipv6/ip6_output.c:154 NF_HOOK_COND include/linux/netfilter.h:278 [inline] ip6_output+0x1e2/0x720 net/ipv6/ip6_output.c:171 dst_output include/net/dst.h:444 [inline] ip6_local_out+0x99/0x170 net/ipv6/output_core.c:176 ip6_send_skb+0x9d/0x2f0 net/ipv6/ip6_output.c:1697 ip6_push_pending_frames+0xc0/0x100 net/ipv6/ip6_output.c:1717 rawv6_push_pending_frames net/ipv6/raw.c:616 [inline] rawv6_sendmsg+0x2435/0x3530 net/ipv6/raw.c:946 inet_sendmsg+0xf8/0x5c0 net/ipv4/af_inet.c:798 sock_sendmsg_nosec net/socket.c:621 [inline] sock_sendmsg+0xc8/0x110 net/socket.c:631 ___sys_sendmsg+0x6cf/0x890 net/socket.c:2114 __sys_sendmsg+0xf0/0x1b0 net/socket.c:2152 do_syscall_64+0xc8/0x580 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe Signed-off-by: linmiaohe <linmiaohe@huawei.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c19650d upstream. Roland reports the following issue and provides a root cause analysis: "On a v4.19 i.MX6 system with IMA and CONFIG_DMA_API_DEBUG enabled, a warning is generated when accessing files on a filesystem for which IMA measurement is enabled: ------------[ cut here ]------------ WARNING: CPU: 0 PID: 1 at kernel/dma/debug.c:1181 check_for_stack.part.9+0xd0/0x120 caam_jr 2101000.jr0: DMA-API: device driver maps memory from stack [addr=b668049e] Modules linked in: CPU: 0 PID: 1 Comm: switch_root Not tainted 4.19.0-20181214-1 #2 Hardware name: Freescale i.MX6 Quad/DualLite (Device Tree) Backtrace: [<c010efb8>] (dump_backtrace) from [<c010f2d0>] (show_stack+0x20/0x24) [<c010f2b0>] (show_stack) from [<c08b04f4>] (dump_stack+0xa0/0xcc) [<c08b0454>] (dump_stack) from [<c012b610>] (__warn+0xf0/0x108) [<c012b520>] (__warn) from [<c012b680>] (warn_slowpath_fmt+0x58/0x74) [<c012b62c>] (warn_slowpath_fmt) from [<c0199acc>] (check_for_stack.part.9+0xd0/0x120) [<c01999fc>] (check_for_stack.part.9) from [<c019a040>] (debug_dma_map_page+0x144/0x174) [<c0199efc>] (debug_dma_map_page) from [<c065f7f4>] (ahash_final_ctx+0x5b4/0xcf0) [<c065f240>] (ahash_final_ctx) from [<c065b3c4>] (ahash_final+0x1c/0x20) [<c065b3a8>] (ahash_final) from [<c03fe278>] (crypto_ahash_op+0x38/0x80) [<c03fe240>] (crypto_ahash_op) from [<c03fe2e0>] (crypto_ahash_final+0x20/0x24) [<c03fe2c0>] (crypto_ahash_final) from [<c03f19a8>] (ima_calc_file_hash+0x29c/0xa40) [<c03f170c>] (ima_calc_file_hash) from [<c03f2b24>] (ima_collect_measurement+0x1dc/0x240) [<c03f2948>] (ima_collect_measurement) from [<c03f0a60>] (process_measurement+0x4c4/0x6b8) [<c03f059c>] (process_measurement) from [<c03f0cdc>] (ima_file_check+0x88/0xa4) [<c03f0c54>] (ima_file_check) from [<c02d8adc>] (path_openat+0x5d8/0x1364) [<c02d8504>] (path_openat) from [<c02dad24>] (do_filp_open+0x84/0xf0) [<c02daca0>] (do_filp_open) from [<c02cf50c>] (do_open_execat+0x84/0x1b0) [<c02cf488>] (do_open_execat) from [<c02d1058>] (__do_execve_file+0x43c/0x890) [<c02d0c1c>] (__do_execve_file) from [<c02d1770>] (sys_execve+0x44/0x4c) [<c02d172c>] (sys_execve) from [<c0101000>] (ret_fast_syscall+0x0/0x28) ---[ end trace 3455789a10e3aefd ]--- The cause is that the struct ahash_request *req is created as a stack-local variable up in the stack (presumably somewhere in the IMA implementation), then passed down into the CAAM driver, which tries to dma_single_map the req->result (indirectly via map_seq_out_ptr_result) in order to make that buffer available for the CAAM to store the result of the following hash operation. The calling code doesn't know how req will be used by the CAAM driver, and there could be other such occurrences where stack memory is passed down to the CAAM driver. Therefore we should rather fix this issue in the CAAM driver where the requirements are known." Fix this problem by: -instructing the crypto engine to write the final hash in state->caam_ctx -subsequently memcpy-ing the final hash into req->result Cc: <stable@vger.kernel.org> # v4.19+ Reported-by: Roland Hieber <rhi@pengutronix.de> Signed-off-by: Horia Geantă <horia.geanta@nxp.com> Tested-by: Roland Hieber <rhi@pengutronix.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1cec3f2 upstream. This fixes a longstanding lockdep warning triggered by fstests/btrfs/011. Circular locking dependency check reports warning[1], that's because the btrfs_scrub_dev() calls the stack #0 below with, the fs_info::scrub_lock held. The test case leading to this warning: $ mkfs.btrfs -f /dev/sdb $ mount /dev/sdb /btrfs $ btrfs scrub start -B /btrfs In fact we have fs_info::scrub_workers_refcnt to track if the init and destroy of the scrub workers are needed. So once we have incremented and decremented the fs_info::scrub_workers_refcnt value in the thread, its ok to drop the scrub_lock, and then actually do the btrfs_destroy_workqueue() part. So this patch drops the scrub_lock before calling btrfs_destroy_workqueue(). [359.258534] ====================================================== [359.260305] WARNING: possible circular locking dependency detected [359.261938] 5.0.0-rc6-default torvalds#461 Not tainted [359.263135] ------------------------------------------------------ [359.264672] btrfs/20975 is trying to acquire lock: [359.265927] 00000000d4d32bea ((wq_completion)"%s-%s""btrfs", name){+.+.}, at: flush_workqueue+0x87/0x540 [359.268416] [359.268416] but task is already holding lock: [359.270061] 0000000053ea26a6 (&fs_info->scrub_lock){+.+.}, at: btrfs_scrub_dev+0x322/0x590 [btrfs] [359.272418] [359.272418] which lock already depends on the new lock. [359.272418] [359.274692] [359.274692] the existing dependency chain (in reverse order) is: [359.276671] [359.276671] -> #3 (&fs_info->scrub_lock){+.+.}: [359.278187] __mutex_lock+0x86/0x9c0 [359.279086] btrfs_scrub_pause+0x31/0x100 [btrfs] [359.280421] btrfs_commit_transaction+0x1e4/0x9e0 [btrfs] [359.281931] close_ctree+0x30b/0x350 [btrfs] [359.283208] generic_shutdown_super+0x64/0x100 [359.284516] kill_anon_super+0x14/0x30 [359.285658] btrfs_kill_super+0x12/0xa0 [btrfs] [359.286964] deactivate_locked_super+0x29/0x60 [359.288242] cleanup_mnt+0x3b/0x70 [359.289310] task_work_run+0x98/0xc0 [359.290428] exit_to_usermode_loop+0x83/0x90 [359.291445] do_syscall_64+0x15b/0x180 [359.292598] entry_SYSCALL_64_after_hwframe+0x49/0xbe [359.294011] [359.294011] -> #2 (sb_internal#2){.+.+}: [359.295432] __sb_start_write+0x113/0x1d0 [359.296394] start_transaction+0x369/0x500 [btrfs] [359.297471] btrfs_finish_ordered_io+0x2aa/0x7c0 [btrfs] [359.298629] normal_work_helper+0xcd/0x530 [btrfs] [359.299698] process_one_work+0x246/0x610 [359.300898] worker_thread+0x3c/0x390 [359.302020] kthread+0x116/0x130 [359.303053] ret_from_fork+0x24/0x30 [359.304152] [359.304152] -> #1 ((work_completion)(&work->normal_work)){+.+.}: [359.306100] process_one_work+0x21f/0x610 [359.307302] worker_thread+0x3c/0x390 [359.308465] kthread+0x116/0x130 [359.309357] ret_from_fork+0x24/0x30 [359.310229] [359.310229] -> #0 ((wq_completion)"%s-%s""btrfs", name){+.+.}: [359.311812] lock_acquire+0x90/0x180 [359.312929] flush_workqueue+0xaa/0x540 [359.313845] drain_workqueue+0xa1/0x180 [359.314761] destroy_workqueue+0x17/0x240 [359.315754] btrfs_destroy_workqueue+0x57/0x200 [btrfs] [359.317245] scrub_workers_put+0x2c/0x60 [btrfs] [359.318585] btrfs_scrub_dev+0x336/0x590 [btrfs] [359.319944] btrfs_dev_replace_by_ioctl.cold.19+0x179/0x1bb [btrfs] [359.321622] btrfs_ioctl+0x28a4/0x2e40 [btrfs] [359.322908] do_vfs_ioctl+0xa2/0x6d0 [359.324021] ksys_ioctl+0x3a/0x70 [359.325066] __x64_sys_ioctl+0x16/0x20 [359.326236] do_syscall_64+0x54/0x180 [359.327379] entry_SYSCALL_64_after_hwframe+0x49/0xbe [359.328772] [359.328772] other info that might help us debug this: [359.328772] [359.330990] Chain exists of: [359.330990] (wq_completion)"%s-%s""btrfs", name --> sb_internal#2 --> &fs_info->scrub_lock [359.330990] [359.334376] Possible unsafe locking scenario: [359.334376] [359.336020] CPU0 CPU1 [359.337070] ---- ---- [359.337821] lock(&fs_info->scrub_lock); [359.338506] lock(sb_internal#2); [359.339506] lock(&fs_info->scrub_lock); [359.341461] lock((wq_completion)"%s-%s""btrfs", name); [359.342437] [359.342437] *** DEADLOCK *** [359.342437] [359.343745] 1 lock held by btrfs/20975: [359.344788] #0: 0000000053ea26a6 (&fs_info->scrub_lock){+.+.}, at: btrfs_scrub_dev+0x322/0x590 [btrfs] [359.346778] [359.346778] stack backtrace: [359.347897] CPU: 0 PID: 20975 Comm: btrfs Not tainted 5.0.0-rc6-default torvalds#461 [359.348983] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626cc-prebuilt.qemu-project.org 04/01/2014 [359.350501] Call Trace: [359.350931] dump_stack+0x67/0x90 [359.351676] print_circular_bug.isra.37.cold.56+0x15c/0x195 [359.353569] check_prev_add.constprop.44+0x4f9/0x750 [359.354849] ? check_prev_add.constprop.44+0x286/0x750 [359.356505] __lock_acquire+0xb84/0xf10 [359.357505] lock_acquire+0x90/0x180 [359.358271] ? flush_workqueue+0x87/0x540 [359.359098] flush_workqueue+0xaa/0x540 [359.359912] ? flush_workqueue+0x87/0x540 [359.360740] ? drain_workqueue+0x1e/0x180 [359.361565] ? drain_workqueue+0xa1/0x180 [359.362391] drain_workqueue+0xa1/0x180 [359.363193] destroy_workqueue+0x17/0x240 [359.364539] btrfs_destroy_workqueue+0x57/0x200 [btrfs] [359.365673] scrub_workers_put+0x2c/0x60 [btrfs] [359.366618] btrfs_scrub_dev+0x336/0x590 [btrfs] [359.367594] ? start_transaction+0xa1/0x500 [btrfs] [359.368679] btrfs_dev_replace_by_ioctl.cold.19+0x179/0x1bb [btrfs] [359.369545] btrfs_ioctl+0x28a4/0x2e40 [btrfs] [359.370186] ? __lock_acquire+0x263/0xf10 [359.370777] ? kvm_clock_read+0x14/0x30 [359.371392] ? kvm_sched_clock_read+0x5/0x10 [359.372248] ? sched_clock+0x5/0x10 [359.372786] ? sched_clock_cpu+0xc/0xc0 [359.373662] ? do_vfs_ioctl+0xa2/0x6d0 [359.374552] do_vfs_ioctl+0xa2/0x6d0 [359.375378] ? do_sigaction+0xff/0x250 [359.376233] ksys_ioctl+0x3a/0x70 [359.376954] __x64_sys_ioctl+0x16/0x20 [359.377772] do_syscall_64+0x54/0x180 [359.378841] entry_SYSCALL_64_after_hwframe+0x49/0xbe [359.380422] RIP: 0033:0x7f5429296a97 Backporting to older kernels: scrub_nocow_workers must be freed the same way as the others. CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Anand Jain <anand.jain@oracle.com> [ update changelog ] Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bbe54ea upstream. Commit 0e157e5 ("PCI/PME: Implement runtime PM callbacks") tried to solve an issue where the hierarchy immediately wakes up when it is transitioned into D3cold. However, it turns out to prevent PME propagation on some systems that do not support D3cold. I looked more closely at what might cause the immediate wakeup. It happens when the ACPI power resource of the root port is turned off. The AML code associated with the _OFF() method of the ACPI power resource starts a PCIe L2/L3 Ready transition and waits for it to complete. Right after the L2/L3 Ready transition is started the root port receives a PME from the downstream port. The simplest hierarchy where this happens looks like this: 00:1d.0 PCIe Root Port ^ | v 05:00.0 PCIe switch #1 upstream port 06:01.0 PCIe switch #1 downstream hotplug port ^ | v 08:00.0 PCIe switch #2 upstream port It seems that the PCIe link between the two switches, before PME_Turn_Off/PME_TO_Ack is complete for the whole hierarchy, goes inactive and triggers PME towards the root port bringing it back to D0. The L2/L3 Ready sequence is described in PCIe r4.0 spec sections 5.2 and 5.3.3 but unfortunately they do not state what happens if DLLSCE is enabled during the sequence. Disabling Data Link Layer State Changed event (DLLSCE) seems to prevent the issue and still allows the downstream hotplug port to notice when a device is plugged/unplugged. Link: https://bugzilla.kernel.org/show_bug.cgi?id=202593 Fixes: 0e157e5 ("PCI/PME: Implement runtime PM callbacks") Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> CC: stable@vger.kernel.org # v4.20+ Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
…mory [ Upstream commit a6ecfb1 ] When halting a guest, QEMU flushes the virtual ITS caches, which amounts to writing to the various tables that the guest has allocated. When doing this, we fail to take the srcu lock, and the kernel shouts loudly if running a lockdep kernel: [ 69.680416] ============================= [ 69.680819] WARNING: suspicious RCU usage [ 69.681526] 5.1.0-rc1-00008-g600025238f51-dirty #18 Not tainted [ 69.682096] ----------------------------- [ 69.682501] ./include/linux/kvm_host.h:605 suspicious rcu_dereference_check() usage! [ 69.683225] [ 69.683225] other info that might help us debug this: [ 69.683225] [ 69.683975] [ 69.683975] rcu_scheduler_active = 2, debug_locks = 1 [ 69.684598] 6 locks held by qemu-system-aar/4097: [ 69.685059] #0: 0000000034196013 (&kvm->lock){+.+.}, at: vgic_its_set_attr+0x244/0x3a0 [ 69.686087] #1: 00000000f2ed935e (&its->its_lock){+.+.}, at: vgic_its_set_attr+0x250/0x3a0 [ 69.686919] #2: 000000005e71ea54 (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0 [ 69.687698] #3: 00000000c17e548d (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0 [ 69.688475] #4: 00000000ba386017 (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0 [ 69.689978] #5: 00000000c2c3c335 (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0 [ 69.690729] [ 69.690729] stack backtrace: [ 69.691151] CPU: 2 PID: 4097 Comm: qemu-system-aar Not tainted 5.1.0-rc1-00008-g600025238f51-dirty #18 [ 69.691984] Hardware name: rockchip evb_rk3399/evb_rk3399, BIOS 2019.04-rc3-00124-g2feec69fb1 03/15/2019 [ 69.692831] Call trace: [ 69.694072] lockdep_rcu_suspicious+0xcc/0x110 [ 69.694490] gfn_to_memslot+0x174/0x190 [ 69.694853] kvm_write_guest+0x50/0xb0 [ 69.695209] vgic_its_save_tables_v0+0x248/0x330 [ 69.695639] vgic_its_set_attr+0x298/0x3a0 [ 69.696024] kvm_device_ioctl_attr+0x9c/0xd8 [ 69.696424] kvm_device_ioctl+0x8c/0xf8 [ 69.696788] do_vfs_ioctl+0xc8/0x960 [ 69.697128] ksys_ioctl+0x8c/0xa0 [ 69.697445] __arm64_sys_ioctl+0x28/0x38 [ 69.697817] el0_svc_common+0xd8/0x138 [ 69.698173] el0_svc_handler+0x38/0x78 [ 69.698528] el0_svc+0x8/0xc The fix is to obviously take the srcu lock, just like we do on the read side of things since bf30824. One wonders why this wasn't fixed at the same time, but hey... Fixes: bf30824 ("KVM: arm/arm64: VGIC/ITS: protect kvm_read_guest() calls with SRCU lock") Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Sasha Levin (Microsoft) <sashal@kernel.org>
[ Upstream commit 7494cec ] Calling kvm_is_visible_gfn() implies that we're parsing the memslots, and doing this without the srcu lock is frown upon: [12704.164532] ============================= [12704.164544] WARNING: suspicious RCU usage [12704.164560] 5.1.0-rc1-00008-g600025238f51-dirty #16 Tainted: G W [12704.164573] ----------------------------- [12704.164589] ./include/linux/kvm_host.h:605 suspicious rcu_dereference_check() usage! [12704.164602] other info that might help us debug this: [12704.164616] rcu_scheduler_active = 2, debug_locks = 1 [12704.164631] 6 locks held by qemu-system-aar/13968: [12704.164644] #0: 000000007ebdae4f (&kvm->lock){+.+.}, at: vgic_its_set_attr+0x244/0x3a0 [12704.164691] #1: 000000007d751022 (&its->its_lock){+.+.}, at: vgic_its_set_attr+0x250/0x3a0 [12704.164726] #2: 00000000219d2706 (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0 [12704.164761] #3: 00000000a760aecd (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0 [12704.164794] #4: 000000000ef8e31d (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0 [12704.164827] #5: 000000007a872093 (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0 [12704.164861] stack backtrace: [12704.164878] CPU: 2 PID: 13968 Comm: qemu-system-aar Tainted: G W 5.1.0-rc1-00008-g600025238f51-dirty #16 [12704.164887] Hardware name: rockchip evb_rk3399/evb_rk3399, BIOS 2019.04-rc3-00124-g2feec69fb1 03/15/2019 [12704.164896] Call trace: [12704.164910] dump_backtrace+0x0/0x138 [12704.164920] show_stack+0x24/0x30 [12704.164934] dump_stack+0xbc/0x104 [12704.164946] lockdep_rcu_suspicious+0xcc/0x110 [12704.164958] gfn_to_memslot+0x174/0x190 [12704.164969] kvm_is_visible_gfn+0x28/0x70 [12704.164980] vgic_its_check_id.isra.0+0xec/0x1e8 [12704.164991] vgic_its_save_tables_v0+0x1ac/0x330 [12704.165001] vgic_its_set_attr+0x298/0x3a0 [12704.165012] kvm_device_ioctl_attr+0x9c/0xd8 [12704.165022] kvm_device_ioctl+0x8c/0xf8 [12704.165035] do_vfs_ioctl+0xc8/0x960 [12704.165045] ksys_ioctl+0x8c/0xa0 [12704.165055] __arm64_sys_ioctl+0x28/0x38 [12704.165067] el0_svc_common+0xd8/0x138 [12704.165078] el0_svc_handler+0x38/0x78 [12704.165089] el0_svc+0x8/0xc Make sure the lock is taken when doing this. Fixes: bf30824 ("KVM: arm/arm64: VGIC/ITS: protect kvm_read_guest() calls with SRCU lock") Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Sasha Levin (Microsoft) <sashal@kernel.org>
[ Upstream commit e6d1fa5 ] Inside sbitmap_queue_clear(), once the clear bit is set, it will be visiable to allocation path immediately. Meantime READ/WRITE on old associated instance(such as request in case of blk-mq) may be out-of-order with the setting clear bit, so race with re-allocation may be triggered. Adds one memory barrier for ordering READ/WRITE of the freed associated instance with setting clear bit for avoiding race with re-allocation. The following kernel oops triggerd by block/006 on aarch64 may be fixed: [ 142.330954] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000330 [ 142.338794] Mem abort info: [ 142.341554] ESR = 0x96000005 [ 142.344632] Exception class = DABT (current EL), IL = 32 bits [ 142.350500] SET = 0, FnV = 0 [ 142.353544] EA = 0, S1PTW = 0 [ 142.356678] Data abort info: [ 142.359528] ISV = 0, ISS = 0x00000005 [ 142.363343] CM = 0, WnR = 0 [ 142.366305] user pgtable: 64k pages, 48-bit VAs, pgdp = 000000002a3c51c0 [ 142.372983] [0000000000000330] pgd=0000000000000000, pud=0000000000000000 [ 142.379777] Internal error: Oops: 96000005 [#1] SMP [ 142.384613] Modules linked in: null_blk ib_isert iscsi_target_mod ib_srpt target_core_mod ib_srp scsi_transport_srp vfat fat rpcrdma sunrpc rdma_ucm ib_iser rdma_cm iw_cm libiscsi ib_umad scsi_transport_iscsi ib_ipoib ib_cm mlx5_ib ib_uverbs ib_core sbsa_gwdt crct10dif_ce ghash_ce ipmi_ssif sha2_ce ipmi_devintf sha256_arm64 sg sha1_ce ipmi_msghandler ip_tables xfs libcrc32c mlx5_core sdhci_acpi mlxfw ahci_platform at803x sdhci libahci_platform qcom_emac mmc_core hdma hdma_mgmt i2c_dev [last unloaded: null_blk] [ 142.429753] CPU: 7 PID: 1983 Comm: fio Not tainted 5.0.0.cki #2 [ 142.449458] pstate: 00400005 (nzcv daif +PAN -UAO) [ 142.454239] pc : __blk_mq_free_request+0x4c/0xa8 [ 142.458830] lr : blk_mq_free_request+0xec/0x118 [ 142.463344] sp : ffff00003360f6a0 [ 142.466646] x29: ffff00003360f6a0 x28: ffff000010e70000 [ 142.471941] x27: ffff801729a50048 x26: 0000000000010000 [ 142.477232] x25: ffff00003360f954 x24: ffff7bdfff021440 [ 142.482529] x23: 0000000000000000 x22: 00000000ffffffff [ 142.487830] x21: ffff801729810000 x20: 0000000000000000 [ 142.493123] x19: ffff801729a50000 x18: 0000000000000000 [ 142.498413] x17: 0000000000000000 x16: 0000000000000001 [ 142.503709] x15: 00000000000000ff x14: ffff7fe000000000 [ 142.509003] x13: ffff8017dcde09a0 x12: 0000000000000000 [ 142.514308] x11: 0000000000000001 x10: 0000000000000008 [ 142.519597] x9 : ffff8017dcde09a0 x8 : 0000000000002000 [ 142.524889] x7 : ffff8017dcde0a00 x6 : 000000015388f9be [ 142.530187] x5 : 0000000000000001 x4 : 0000000000000000 [ 142.535478] x3 : 0000000000000000 x2 : 0000000000000000 [ 142.540777] x1 : 0000000000000001 x0 : ffff00001041b194 [ 142.546071] Process fio (pid: 1983, stack limit = 0x000000006460a0ea) [ 142.552500] Call trace: [ 142.554926] __blk_mq_free_request+0x4c/0xa8 [ 142.559181] blk_mq_free_request+0xec/0x118 [ 142.563352] blk_mq_end_request+0xfc/0x120 [ 142.567444] end_cmd+0x3c/0xa8 [null_blk] [ 142.571434] null_complete_rq+0x20/0x30 [null_blk] [ 142.576194] blk_mq_complete_request+0x108/0x148 [ 142.580797] null_handle_cmd+0x1d4/0x718 [null_blk] [ 142.585662] null_queue_rq+0x60/0xa8 [null_blk] [ 142.590171] blk_mq_try_issue_directly+0x148/0x280 [ 142.594949] blk_mq_try_issue_list_directly+0x9c/0x108 [ 142.600064] blk_mq_sched_insert_requests+0xb0/0xd0 [ 142.604926] blk_mq_flush_plug_list+0x16c/0x2a0 [ 142.609441] blk_flush_plug_list+0xec/0x118 [ 142.613608] blk_finish_plug+0x3c/0x4c [ 142.617348] blkdev_direct_IO+0x3b4/0x428 [ 142.621336] generic_file_read_iter+0x84/0x180 [ 142.625761] blkdev_read_iter+0x50/0x78 [ 142.629579] aio_read.isra.6+0xf8/0x190 [ 142.633409] __io_submit_one.isra.8+0x148/0x738 [ 142.637912] io_submit_one.isra.9+0x88/0xb8 [ 142.642078] __arm64_sys_io_submit+0xe0/0x238 [ 142.646428] el0_svc_handler+0xa0/0x128 [ 142.650238] el0_svc+0x8/0xc [ 142.653104] Code: b9402a63 f9000a7f 3100047f 540000a0 (f9419a81) [ 142.659202] ---[ end trace 467586bc175eb09d ]--- Fixes: ea86ea2 ("sbitmap: ammortize cost of clearing bits") Reported-and-bisected_and_tested-by: Yi Zhang <yi.zhang@redhat.com> Cc: Yi Zhang <yi.zhang@redhat.com> Cc: "jianchao.wang" <jianchao.w.wang@oracle.com> Reviewed-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Sasha Levin (Microsoft) <sashal@kernel.org>
[ Upstream commit 47b1682 ] If xace hardware reports a bad version number, the error handling code in ace_setup() calls put_disk(), followed by queue cleanup. However, since the disk data structure has the queue pointer set, put_disk() also cleans and releases the queue. This results in blk_cleanup_queue() accessing an already released data structure, which in turn may result in a crash such as the following. [ 10.681671] BUG: Kernel NULL pointer dereference at 0x00000040 [ 10.681826] Faulting instruction address: 0xc0431480 [ 10.682072] Oops: Kernel access of bad area, sig: 11 [#1] [ 10.682251] BE PAGE_SIZE=4K PREEMPT Xilinx Virtex440 [ 10.682387] Modules linked in: [ 10.682528] CPU: 0 PID: 1 Comm: swapper Tainted: G W 5.0.0-rc6-next-20190218+ #2 [ 10.682733] NIP: c0431480 LR: c043147c CTR: c0422ad8 [ 10.682863] REGS: cf82fbe0 TRAP: 0300 Tainted: G W (5.0.0-rc6-next-20190218+) [ 10.683065] MSR: 00029000 <CE,EE,ME> CR: 22000222 XER: 00000000 [ 10.683236] DEAR: 00000040 ESR: 00000000 [ 10.683236] GPR00: c043147c cf82fc90 cf82ccc0 00000000 00000000 00000000 00000002 00000000 [ 10.683236] GPR08: 00000000 00000000 c04310bc 00000000 22000222 00000000 c0002c54 00000000 [ 10.683236] GPR16: 00000000 00000001 c09aa39c c09021b0 c09021dc 00000007 c0a68c08 00000000 [ 10.683236] GPR24: 00000001 ced6d400 ced6dcf0 c0815d9c 00000000 00000000 00000000 cedf0800 [ 10.684331] NIP [c0431480] blk_mq_run_hw_queue+0x28/0x114 [ 10.684473] LR [c043147c] blk_mq_run_hw_queue+0x24/0x114 [ 10.684602] Call Trace: [ 10.684671] [cf82fc90] [c043147c] blk_mq_run_hw_queue+0x24/0x114 (unreliable) [ 10.684854] [cf82fcc0] [c04315bc] blk_mq_run_hw_queues+0x50/0x7c [ 10.685002] [cf82fce0] [c0422b24] blk_set_queue_dying+0x30/0x68 [ 10.685154] [cf82fcf0] [c0423ec0] blk_cleanup_queue+0x34/0x14c [ 10.685306] [cf82fd10] [c054d73c] ace_probe+0x3dc/0x508 [ 10.685445] [cf82fd50] [c052d740] platform_drv_probe+0x4c/0xb8 [ 10.685592] [cf82fd70] [c052abb0] really_probe+0x20c/0x32c [ 10.685728] [cf82fda0] [c052ae58] driver_probe_device+0x68/0x464 [ 10.685877] [cf82fdc0] [c052b500] device_driver_attach+0xb4/0xe4 [ 10.686024] [cf82fde0] [c052b5dc] __driver_attach+0xac/0xfc [ 10.686161] [cf82fe00] [c0528428] bus_for_each_dev+0x80/0xc0 [ 10.686314] [cf82fe30] [c0529b3c] bus_add_driver+0x144/0x234 [ 10.686457] [cf82fe50] [c052c46] driver_register+0x88/0x15c [ 10.686610] [cf82fe60] [c09de288] ace_init+0x4c/0xac [ 10.686742] [cf82fe80] [c0002730] do_one_initcall+0xac/0x330 [ 10.686888] [cf82fee0] [c09aafd0] kernel_init_freeable+0x34c/0x478 [ 10.687043] [cf82ff30] [c0002c6c] kernel_init+0x18/0x114 [ 10.687188] [cf82ff40] [c000f2f0] ret_from_kernel_thread+0x14/0x1c [ 10.687349] Instruction dump: [ 10.687435] 3863ffd4 4bfffd70 9421ffd0 7c0802a6 93c10028 7c9e2378 93e1002c 38810008 [ 10.687637] 7c7f1b78 90010034 4bfffc25 813f008c <81290040> 75290100 4182002c 80810008 [ 10.688056] ---[ end trace 13c9ff51d41b9d40 ]--- Fix the problem by setting the disk queue pointer to NULL before calling put_disk(). A more comprehensive fix might be to rearrange the code to check the hardware version before initializing data structures, but I don't know if this would have undesirable side effects, and it would increase the complexity of backporting the fix to older kernels. Fixes: 74489a9 ("Add support for Xilinx SystemACE CompactFlash interface") Acked-by: Michal Simek <michal.simek@xilinx.com> Signed-off-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Sasha Levin (Microsoft) <sashal@kernel.org>
[ Upstream commit b9abbdf ] By calling maps__insert() we assume to get 2 references on the map, which we relese within maps__remove call. However if there's already same map name, we currently don't bump the reference and can crash, like: Program received signal SIGABRT, Aborted. 0x00007ffff75e60f5 in raise () from /lib64/libc.so.6 (gdb) bt #0 0x00007ffff75e60f5 in raise () from /lib64/libc.so.6 #1 0x00007ffff75d0895 in abort () from /lib64/libc.so.6 #2 0x00007ffff75d0769 in __assert_fail_base.cold () from /lib64/libc.so.6 #3 0x00007ffff75de596 in __assert_fail () from /lib64/libc.so.6 #4 0x00000000004fc006 in refcount_sub_and_test (i=1, r=0x1224e88) at tools/include/linux/refcount.h:131 #5 refcount_dec_and_test (r=0x1224e88) at tools/include/linux/refcount.h:148 #6 map__put (map=0x1224df0) at util/map.c:299 #7 0x00000000004fdb95 in __maps__remove (map=0x1224df0, maps=0xb17d80) at util/map.c:953 #8 maps__remove (maps=0xb17d80, map=0x1224df0) at util/map.c:959 #9 0x00000000004f7d8a in map_groups__remove (map=<optimized out>, mg=<optimized out>) at util/map_groups.h:65 #10 machine__process_ksymbol_unregister (sample=<optimized out>, event=0x7ffff7279670, machine=<optimized out>) at util/machine.c:728 #11 machine__process_ksymbol (machine=<optimized out>, event=0x7ffff7279670, sample=<optimized out>) at util/machine.c:741 #12 0x00000000004fffbb in perf_session__deliver_event (session=0xb11390, event=0x7ffff7279670, tool=0x7fffffffc7b0, file_offset=13936) at util/session.c:1362 #13 0x00000000005039bb in do_flush (show_progress=false, oe=0xb17e80) at util/ordered-events.c:243 #14 __ordered_events__flush (oe=0xb17e80, how=OE_FLUSH__ROUND, timestamp=<optimized out>) at util/ordered-events.c:322 #15 0x00000000005005e4 in perf_session__process_user_event (session=session@entry=0xb11390, event=event@entry=0x7ffff72a4af8, ... Add the map to the list and getting the reference event if we find the map with same name. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Eric Saint-Etienne <eric.saint.etienne@oracle.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Song Liu <songliubraving@fb.com> Fixes: 1e62856 ("perf symbols: Fix slowness due to -ffunction-section") Link: http://lkml.kernel.org/r/20190416160127.30203-10-jolsa@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
commit e091eab upstream. In some cases, ocfs2_iget() reads the data of inode, which has been deleted for some reason. That will make the system panic. So We should judge whether this inode has been deleted, and tell the caller that the inode is a bad inode. For example, the ocfs2 is used as the backed of nfs, and the client is nfsv3. This issue can be reproduced by the following steps. on the nfs server side, ..../patha/pathb Step 1: The process A was scheduled before calling the function fh_verify. Step 2: The process B is removing the 'pathb', and just completed the call to function dput. Then the dentry of 'pathb' has been deleted from the dcache, and all ancestors have been deleted also. The relationship of dentry and inode was deleted through the function hlist_del_init. The following is the call stack. dentry_iput->hlist_del_init(&dentry->d_u.d_alias) At this time, the inode is still in the dcache. Step 3: The process A call the function ocfs2_get_dentry, which get the inode from dcache. Then the refcount of inode is 1. The following is the call stack. nfsd3_proc_getacl->fh_verify->exportfs_decode_fh->fh_to_dentry(ocfs2_get_dentry) Step 4: Dirty pages are flushed by bdi threads. So the inode of 'patha' is evicted, and this directory was deleted. But the inode of 'pathb' can't be evicted, because the refcount of the inode was 1. Step 5: The process A keep running, and call the function reconnect_path(in exportfs_decode_fh), which call function ocfs2_get_parent of ocfs2. Get the block number of parent directory(patha) by the name of ... Then read the data from disk by the block number. But this inode has been deleted, so the system panic. Process A Process B 1. in nfsd3_proc_getacl | 2. | dput 3. fh_to_dentry(ocfs2_get_dentry) | 4. bdi flush dirty cache | 5. ocfs2_iget | [283465.542049] OCFS2: ERROR (device sdp): ocfs2_validate_inode_block: Invalid dinode #580640: OCFS2_VALID_FL not set [283465.545490] Kernel panic - not syncing: OCFS2: (device sdp): panic forced after error [283465.546889] CPU: 5 PID: 12416 Comm: nfsd Tainted: G W 4.1.12-124.18.6.el6uek.bug28762940v3.x86_64 #2 [283465.548382] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 09/21/2015 [283465.549657] 0000000000000000 ffff8800a56fb7b8 ffffffff816e839c ffffffffa0514758 [283465.550392] 000000000008dc20 ffff8800a56fb838 ffffffff816e62d3 0000000000000008 [283465.551056] ffff880000000010 ffff8800a56fb848 ffff8800a56fb7e8 ffff88005df9f000 [283465.551710] Call Trace: [283465.552516] [<ffffffff816e839c>] dump_stack+0x63/0x81 [283465.553291] [<ffffffff816e62d3>] panic+0xcb/0x21b [283465.554037] [<ffffffffa04e66b0>] ocfs2_handle_error+0xf0/0xf0 [ocfs2] [283465.554882] [<ffffffffa04e7737>] __ocfs2_error+0x67/0x70 [ocfs2] [283465.555768] [<ffffffffa049c0f9>] ocfs2_validate_inode_block+0x229/0x230 [ocfs2] [283465.556683] [<ffffffffa047bcbc>] ocfs2_read_blocks+0x46c/0x7b0 [ocfs2] [283465.557408] [<ffffffffa049bed0>] ? ocfs2_inode_cache_io_unlock+0x20/0x20 [ocfs2] [283465.557973] [<ffffffffa049f0eb>] ocfs2_read_inode_block_full+0x3b/0x60 [ocfs2] [283465.558525] [<ffffffffa049f5ba>] ocfs2_iget+0x4aa/0x880 [ocfs2] [283465.559082] [<ffffffffa049146e>] ocfs2_get_parent+0x9e/0x220 [ocfs2] [283465.559622] [<ffffffff81297c05>] reconnect_path+0xb5/0x300 [283465.560156] [<ffffffff81297f46>] exportfs_decode_fh+0xf6/0x2b0 [283465.560708] [<ffffffffa062faf0>] ? nfsd_proc_getattr+0xa0/0xa0 [nfsd] [283465.561262] [<ffffffff810a8196>] ? prepare_creds+0x26/0x110 [283465.561932] [<ffffffffa0630860>] fh_verify+0x350/0x660 [nfsd] [283465.562862] [<ffffffffa0637804>] ? nfsd_cache_lookup+0x44/0x630 [nfsd] [283465.563697] [<ffffffffa063a8b9>] nfsd3_proc_getattr+0x69/0xf0 [nfsd] [283465.564510] [<ffffffffa062cf60>] nfsd_dispatch+0xe0/0x290 [nfsd] [283465.565358] [<ffffffffa05eb892>] ? svc_tcp_adjust_wspace+0x12/0x30 [sunrpc] [283465.566272] [<ffffffffa05ea652>] svc_process_common+0x412/0x6a0 [sunrpc] [283465.567155] [<ffffffffa05eaa03>] svc_process+0x123/0x210 [sunrpc] [283465.568020] [<ffffffffa062c90f>] nfsd+0xff/0x170 [nfsd] [283465.568962] [<ffffffffa062c810>] ? nfsd_destroy+0x80/0x80 [nfsd] [283465.570112] [<ffffffff810a622b>] kthread+0xcb/0xf0 [283465.571099] [<ffffffff810a6160>] ? kthread_create_on_node+0x180/0x180 [283465.572114] [<ffffffff816f11b8>] ret_from_fork+0x58/0x90 [283465.573156] [<ffffffff810a6160>] ? kthread_create_on_node+0x180/0x180 Link: http://lkml.kernel.org/r/1554185919-3010-1-git-send-email-sunny.s.zhang@oracle.com Signed-off-by: Shuning Zhang <sunny.s.zhang@oracle.com> Reviewed-by: Joseph Qi <jiangqi903@gmail.com> Cc: Mark Fasheh <mark@fasheh.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Junxiao Bi <junxiao.bi@oracle.com> Cc: Changwei Ge <gechangwei@live.cn> Cc: piaojun <piaojun@huawei.com> Cc: "Gang He" <ghe@suse.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit f80c5da ] This commit makes the kernel not send the next queued HCI command until a command complete arrives for the last HCI command sent to the controller. This change avoids a problem with some buggy controllers (seen on two SKUs of QCA9377) that send an extra command complete event for the previous command after the kernel had already sent a new HCI command to the controller. The problem was reproduced when starting an active scanning procedure, where an extra command complete event arrives for the LE_SET_RANDOM_ADDR command. When this happends the kernel ends up not processing the command complete for the following commmand, LE_SET_SCAN_PARAM, and ultimately behaving as if a passive scanning procedure was being performed, when in fact controller is performing an active scanning procedure. This makes it impossible to discover BLE devices as no device found events are sent to userspace. This problem is reproducible on 100% of the attempts on the affected controllers. The extra command complete event can be seen at timestamp 27.420131 on the btmon logs bellow. Bluetooth monitor ver 5.50 = Note: Linux version 5.0.0+ (x86_64) 0.352340 = Note: Bluetooth subsystem version 2.22 0.352343 = New Index: 80:C5:F2:8F:87:84 (Primary,USB,hci0) [hci0] 0.352344 = Open Index: 80:C5:F2:8F:87:84 [hci0] 0.352345 = Index Info: 80:C5:F2:8F:87:84 (Qualcomm) [hci0] 0.352346 @ MGMT Open: bluetoothd (privileged) version 1.14 {0x0001} 0.352347 @ MGMT Open: btmon (privileged) version 1.14 {0x0002} 0.352366 @ MGMT Open: btmgmt (privileged) version 1.14 {0x0003} 27.302164 @ MGMT Command: Start Discovery (0x0023) plen 1 {0x0003} [hci0] 27.302310 Address type: 0x06 LE Public LE Random < HCI Command: LE Set Random Address (0x08|0x0005) plen 6 #1 [hci0] 27.302496 Address: 15:60:F2:91:B2:24 (Non-Resolvable) > HCI Event: Command Complete (0x0e) plen 4 #2 [hci0] 27.419117 LE Set Random Address (0x08|0x0005) ncmd 1 Status: Success (0x00) < HCI Command: LE Set Scan Parameters (0x08|0x000b) plen 7 #3 [hci0] 27.419244 Type: Active (0x01) Interval: 11.250 msec (0x0012) Window: 11.250 msec (0x0012) Own address type: Random (0x01) Filter policy: Accept all advertisement (0x00) > HCI Event: Command Complete (0x0e) plen 4 #4 [hci0] 27.420131 LE Set Random Address (0x08|0x0005) ncmd 1 Status: Success (0x00) < HCI Command: LE Set Scan Enable (0x08|0x000c) plen 2 #5 [hci0] 27.420259 Scanning: Enabled (0x01) Filter duplicates: Enabled (0x01) > HCI Event: Command Complete (0x0e) plen 4 #6 [hci0] 27.420969 LE Set Scan Parameters (0x08|0x000b) ncmd 1 Status: Success (0x00) > HCI Event: Command Complete (0x0e) plen 4 #7 [hci0] 27.421983 LE Set Scan Enable (0x08|0x000c) ncmd 1 Status: Success (0x00) @ MGMT Event: Command Complete (0x0001) plen 4 {0x0003} [hci0] 27.422059 Start Discovery (0x0023) plen 1 Status: Success (0x00) Address type: 0x06 LE Public LE Random @ MGMT Event: Discovering (0x0013) plen 2 {0x0003} [hci0] 27.422067 Address type: 0x06 LE Public LE Random Discovery: Enabled (0x01) @ MGMT Event: Discovering (0x0013) plen 2 {0x0002} [hci0] 27.422067 Address type: 0x06 LE Public LE Random Discovery: Enabled (0x01) @ MGMT Event: Discovering (0x0013) plen 2 {0x0001} [hci0] 27.422067 Address type: 0x06 LE Public LE Random Discovery: Enabled (0x01) Signed-off-by: João Paulo Rechi Vita <jprvita@endlessm.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 41a91c6 ] dwc3_gadget_suspend() is called under dwc->lock spinlock. In such context calling synchronize_irq() is not allowed. Move the problematic call out of the protected block to fix the following kernel BUG during system suspend: BUG: sleeping function called from invalid context at kernel/irq/manage.c:112 in_atomic(): 1, irqs_disabled(): 128, pid: 1601, name: rtcwake 6 locks held by rtcwake/1601: #0: f70ac2a2 (sb_writers#7){.+.+}, at: vfs_write+0x130/0x16c #1: b5fe1270 (&of->mutex){+.+.}, at: kernfs_fop_write+0xc0/0x1e4 #2: 7e597705 (kn->count#60){.+.+}, at: kernfs_fop_write+0xc8/0x1e4 #3: 8b3527d0 (system_transition_mutex){+.+.}, at: pm_suspend+0xc4/0xc04 #4: fc7f1c42 (&dev->mutex){....}, at: __device_suspend+0xd8/0x74c #5: 4b36507e (&(&dwc->lock)->rlock){....}, at: dwc3_gadget_suspend+0x24/0x3c irq event stamp: 11252 hardirqs last enabled at (11251): [<c09c54a4>] _raw_spin_unlock_irqrestore+0x6c/0x74 hardirqs last disabled at (11252): [<c09c4d44>] _raw_spin_lock_irqsave+0x1c/0x5c softirqs last enabled at (9744): [<c0102564>] __do_softirq+0x3a4/0x66c softirqs last disabled at (9737): [<c0128528>] irq_exit+0x140/0x168 Preemption disabled at: [<00000000>] (null) CPU: 7 PID: 1601 Comm: rtcwake Not tainted 5.0.0-rc3-next-20190122-00039-ga3f4ee4f8a52 #5252 Hardware name: SAMSUNG EXYNOS (Flattened Device Tree) [<c01110f0>] (unwind_backtrace) from [<c010d120>] (show_stack+0x10/0x14) [<c010d120>] (show_stack) from [<c09a4d04>] (dump_stack+0x90/0xc8) [<c09a4d04>] (dump_stack) from [<c014c700>] (___might_sleep+0x22c/0x2c8) [<c014c700>] (___might_sleep) from [<c0189d68>] (synchronize_irq+0x28/0x84) [<c0189d68>] (synchronize_irq) from [<c05cbbf8>] (dwc3_gadget_suspend+0x34/0x3c) [<c05cbbf8>] (dwc3_gadget_suspend) from [<c05bd020>] (dwc3_suspend_common+0x154/0x410) [<c05bd020>] (dwc3_suspend_common) from [<c05bd34c>] (dwc3_suspend+0x14/0x2c) [<c05bd34c>] (dwc3_suspend) from [<c051c730>] (platform_pm_suspend+0x2c/0x54) [<c051c730>] (platform_pm_suspend) from [<c05285d4>] (dpm_run_callback+0xa4/0x3dc) [<c05285d4>] (dpm_run_callback) from [<c0528a40>] (__device_suspend+0x134/0x74c) [<c0528a40>] (__device_suspend) from [<c052c508>] (dpm_suspend+0x174/0x588) [<c052c508>] (dpm_suspend) from [<c0182134>] (suspend_devices_and_enter+0xc0/0xe74) [<c0182134>] (suspend_devices_and_enter) from [<c0183658>] (pm_suspend+0x770/0xc04) [<c0183658>] (pm_suspend) from [<c0180ddc>] (state_store+0x6c/0xcc) [<c0180ddc>] (state_store) from [<c09a9a70>] (kobj_attr_store+0x14/0x20) [<c09a9a70>] (kobj_attr_store) from [<c02d6800>] (sysfs_kf_write+0x4c/0x50) [<c02d6800>] (sysfs_kf_write) from [<c02d594c>] (kernfs_fop_write+0xfc/0x1e4) [<c02d594c>] (kernfs_fop_write) from [<c02593d8>] (__vfs_write+0x2c/0x160) [<c02593d8>] (__vfs_write) from [<c0259694>] (vfs_write+0xa4/0x16c) [<c0259694>] (vfs_write) from [<c0259870>] (ksys_write+0x40/0x8c) [<c0259870>] (ksys_write) from [<c0101000>] (ret_fast_syscall+0x0/0x28) Exception stack(0xed55ffa8 to 0xed55fff0) ... Fixes: 01c1088 ("usb: dwc3: gadget: synchronize_irq dwc irq in suspend") Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: Felipe Balbi <felipe.balbi@linux.intel.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 73103c7 ] The following kernel panic happens due to the io_data buffer gets deallocated before the async io is completed. Add a check for the case where io_data buffer should be deallocated by ffs_user_copy_worker. [ 41.663334] BUG: unable to handle kernel NULL pointer dereference at 0000000000000048 [ 41.672099] #PF error: [normal kernel read fault] [ 41.677356] PGD 20c974067 P4D 20c974067 PUD 20c973067 PMD 0 [ 41.683687] Oops: 0000 [#1] PREEMPT SMP [ 41.687976] CPU: 1 PID: 7 Comm: kworker/u8:0 Tainted: G U 5.0.0-quilt-2e5dc0ac-00790-gd8c79f2-dirty #2 [ 41.705309] Workqueue: adb ffs_user_copy_worker [ 41.705316] RIP: 0010:__vunmap+0x2a/0xc0 [ 41.705318] Code: 0f 1f 44 00 00 48 85 ff 0f 84 87 00 00 00 55 f7 c7 ff 0f 00 00 48 89 e5 41 55 41 89 f5 41 54 53 48 89 fb 75 71 e8 56 d7 ff ff <4c> 8b 60 48 4d 85 e4 74 76 48 89 df e8 25 ff ff ff 45 85 ed 74 46 [ 41.705320] RSP: 0018:ffffbc3a40053df0 EFLAGS: 00010286 [ 41.705322] RAX: 0000000000000000 RBX: ffffbc3a406f1000 RCX: 0000000000000000 [ 41.705323] RDX: 0000000000000001 RSI: 0000000000000001 RDI: 00000000ffffffff [ 41.705324] RBP: ffffbc3a40053e08 R08: 000000000001fb79 R09: 0000000000000037 [ 41.705325] R10: ffffbc3a40053b68 R11: ffffbc3a40053cad R12: fffffffffffffff2 [ 41.705326] R13: 0000000000000001 R14: 0000000000000000 R15: ffffffffffffffff [ 41.705328] FS: 0000000000000000(0000) GS:ffff9e2977a80000(0000) knlGS:0000000000000000 [ 41.705329] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 41.705330] CR2: 0000000000000048 CR3: 000000020c994000 CR4: 00000000003406e0 [ 41.705331] Call Trace: [ 41.705338] vfree+0x50/0xb0 [ 41.705341] ffs_user_copy_worker+0xe9/0x1c0 [ 41.705344] process_one_work+0x19f/0x3e0 [ 41.705348] worker_thread+0x3f/0x3b0 [ 41.829766] kthread+0x12b/0x150 [ 41.833371] ? process_one_work+0x3e0/0x3e0 [ 41.838045] ? kthread_create_worker_on_cpu+0x70/0x70 [ 41.843695] ret_from_fork+0x3a/0x50 [ 41.847689] Modules linked in: hci_uart bluetooth ecdh_generic rfkill_gpio dwc3_pci dwc3 snd_usb_audio mei_me tpm_crb snd_usbmidi_lib xhci_pci xhci_hcd mei tpm snd_hwdep cfg80211 snd_soc_skl snd_soc_skl_ipc snd_soc_sst_ipc snd_soc_sst_dsp snd_hda_ext_core snd_hda_core videobuf2_dma_sg crlmodule [ 41.876880] CR2: 0000000000000048 [ 41.880584] ---[ end trace 2bc4addff0f2e673 ]--- [ 41.891346] RIP: 0010:__vunmap+0x2a/0xc0 [ 41.895734] Code: 0f 1f 44 00 00 48 85 ff 0f 84 87 00 00 00 55 f7 c7 ff 0f 00 00 48 89 e5 41 55 41 89 f5 41 54 53 48 89 fb 75 71 e8 56 d7 ff ff <4c> 8b 60 48 4d 85 e4 74 76 48 89 df e8 25 ff ff ff 45 85 ed 74 46 [ 41.916740] RSP: 0018:ffffbc3a40053df0 EFLAGS: 00010286 [ 41.922583] RAX: 0000000000000000 RBX: ffffbc3a406f1000 RCX: 0000000000000000 [ 41.930563] RDX: 0000000000000001 RSI: 0000000000000001 RDI: 00000000ffffffff [ 41.938540] RBP: ffffbc3a40053e08 R08: 000000000001fb79 R09: 0000000000000037 [ 41.946520] R10: ffffbc3a40053b68 R11: ffffbc3a40053cad R12: fffffffffffffff2 [ 41.954502] R13: 0000000000000001 R14: 0000000000000000 R15: ffffffffffffffff [ 41.962482] FS: 0000000000000000(0000) GS:ffff9e2977a80000(0000) knlGS:0000000000000000 [ 41.971536] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 41.977960] CR2: 0000000000000048 CR3: 000000020c994000 CR4: 00000000003406e0 [ 41.985930] Kernel panic - not syncing: Fatal exception [ 41.991817] Kernel Offset: 0x16000000 from 0xffffffff81000000 (relocation range: 0xffffffff80000000-0xffffffffbfffffff) [ 42.009525] Rebooting in 10 seconds.. [ 52.014376] ACPI MEMORY or I/O RESET_REG. Fixes: 772a7a7 ("usb: gadget: f_fs: Allow scatter-gather buffers") Signed-off-by: Fei Yang <fei.yang@intel.com> Reviewed-by: Manu Gautam <mgautam@codeaurora.org> Tested-by: John Stultz <john.stultz@linaro.org> Signed-off-by: Felipe Balbi <felipe.balbi@linux.intel.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
…cm_qla2xxx_close_session() [ Upstream commit d4023db ] This patch avoids that lockdep reports the following warning: ===================================================== WARNING: HARDIRQ-safe -> HARDIRQ-unsafe lock order detected 5.1.0-rc1-dbg+ #11 Tainted: G W ----------------------------------------------------- rmdir/1478 [HC0[0]:SC0[0]:HE0:SE1] is trying to acquire: 00000000e7ac4607 (&(&k->k_lock)->rlock){+.+.}, at: klist_next+0x43/0x1d0 and this task is already holding: 00000000cf0baf5e (&(&ha->tgt.sess_lock)->rlock){-...}, at: tcm_qla2xxx_close_session+0x57/0xb0 [tcm_qla2xxx] which would create a new lock dependency: (&(&ha->tgt.sess_lock)->rlock){-...} -> (&(&k->k_lock)->rlock){+.+.} but this new dependency connects a HARDIRQ-irq-safe lock: (&(&ha->tgt.sess_lock)->rlock){-...} ... which became HARDIRQ-irq-safe at: lock_acquire+0xe3/0x200 _raw_spin_lock_irqsave+0x3d/0x60 qla2x00_fcport_event_handler+0x1f3d/0x22b0 [qla2xxx] qla2x00_async_login_sp_done+0x1dc/0x1f0 [qla2xxx] qla24xx_process_response_queue+0xa37/0x10e0 [qla2xxx] qla24xx_msix_rsp_q+0x79/0xf0 [qla2xxx] __handle_irq_event_percpu+0x79/0x3c0 handle_irq_event_percpu+0x70/0xf0 handle_irq_event+0x5a/0x8b handle_edge_irq+0x12c/0x310 handle_irq+0x192/0x20a do_IRQ+0x73/0x160 ret_from_intr+0x0/0x1d default_idle+0x23/0x1f0 arch_cpu_idle+0x15/0x20 default_idle_call+0x35/0x40 do_idle+0x2bb/0x2e0 cpu_startup_entry+0x1d/0x20 start_secondary+0x24d/0x2d0 secondary_startup_64+0xa4/0xb0 to a HARDIRQ-irq-unsafe lock: (&(&k->k_lock)->rlock){+.+.} ... which became HARDIRQ-irq-unsafe at: ... lock_acquire+0xe3/0x200 _raw_spin_lock+0x32/0x50 klist_add_tail+0x33/0xb0 device_add+0x7f4/0xb60 device_create_groups_vargs+0x11c/0x150 device_create_with_groups+0x89/0xb0 vtconsole_class_init+0xb2/0x124 do_one_initcall+0xc5/0x3ce kernel_init_freeable+0x295/0x32e kernel_init+0x11/0x11b ret_from_fork+0x3a/0x50 other info that might help us debug this: Possible interrupt unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&(&k->k_lock)->rlock); local_irq_disable(); lock(&(&ha->tgt.sess_lock)->rlock); lock(&(&k->k_lock)->rlock); <Interrupt> lock(&(&ha->tgt.sess_lock)->rlock); *** DEADLOCK *** 4 locks held by rmdir/1478: #0: 000000002c7f1ba4 (sb_writers#10){.+.+}, at: mnt_want_write+0x32/0x70 #1: 00000000c85eb147 (&default_group_class[depth - 1]#2/1){+.+.}, at: do_rmdir+0x217/0x2d0 #2: 000000002b164d6f (&sb->s_type->i_mutex_key#13){++++}, at: vfs_rmdir+0x7e/0x1d0 #3: 00000000cf0baf5e (&(&ha->tgt.sess_lock)->rlock){-...}, at: tcm_qla2xxx_close_session+0x57/0xb0 [tcm_qla2xxx] the dependencies between HARDIRQ-irq-safe lock and the holding lock: -> (&(&ha->tgt.sess_lock)->rlock){-...} ops: 127 { IN-HARDIRQ-W at: lock_acquire+0xe3/0x200 _raw_spin_lock_irqsave+0x3d/0x60 qla2x00_fcport_event_handler+0x1f3d/0x22b0 [qla2xxx] qla2x00_async_login_sp_done+0x1dc/0x1f0 [qla2xxx] qla24xx_process_response_queue+0xa37/0x10e0 [qla2xxx] qla24xx_msix_rsp_q+0x79/0xf0 [qla2xxx] __handle_irq_event_percpu+0x79/0x3c0 handle_irq_event_percpu+0x70/0xf0 handle_irq_event+0x5a/0x8b handle_edge_irq+0x12c/0x310 handle_irq+0x192/0x20a do_IRQ+0x73/0x160 ret_from_intr+0x0/0x1d default_idle+0x23/0x1f0 arch_cpu_idle+0x15/0x20 default_idle_call+0x35/0x40 do_idle+0x2bb/0x2e0 cpu_startup_entry+0x1d/0x20 start_secondary+0x24d/0x2d0 secondary_startup_64+0xa4/0xb0 INITIAL USE at: lock_acquire+0xe3/0x200 _raw_spin_lock_irqsave+0x3d/0x60 qla2x00_loop_resync+0xb3d/0x2690 [qla2xxx] qla2x00_do_dpc+0xcee/0xf30 [qla2xxx] kthread+0x1d2/0x1f0 ret_from_fork+0x3a/0x50 } ... key at: [<ffffffffa125f700>] __key.62804+0x0/0xfffffffffff7e900 [qla2xxx] ... acquired at: __lock_acquire+0x11ed/0x1b60 lock_acquire+0xe3/0x200 _raw_spin_lock_irqsave+0x3d/0x60 klist_next+0x43/0x1d0 device_for_each_child+0x96/0x110 scsi_target_block+0x3c/0x40 [scsi_mod] fc_remote_port_delete+0xe7/0x1c0 [scsi_transport_fc] qla2x00_mark_device_lost+0x4d3/0x500 [qla2xxx] qlt_unreg_sess+0x104/0x2c0 [qla2xxx] tcm_qla2xxx_close_session+0xa2/0xb0 [tcm_qla2xxx] target_shutdown_sessions+0x17b/0x190 [target_core_mod] core_tpg_del_initiator_node_acl+0xf3/0x1f0 [target_core_mod] target_fabric_nacl_base_release+0x25/0x30 [target_core_mod] config_item_release+0x9f/0x120 [configfs] config_item_put+0x29/0x2b [configfs] configfs_rmdir+0x3d2/0x520 [configfs] vfs_rmdir+0xb3/0x1d0 do_rmdir+0x25c/0x2d0 __x64_sys_rmdir+0x24/0x30 do_syscall_64+0x77/0x220 entry_SYSCALL_64_after_hwframe+0x49/0xbe the dependencies between the lock to be acquired and HARDIRQ-irq-unsafe lock: -> (&(&k->k_lock)->rlock){+.+.} ops: 14568 { HARDIRQ-ON-W at: lock_acquire+0xe3/0x200 _raw_spin_lock+0x32/0x50 klist_add_tail+0x33/0xb0 device_add+0x7f4/0xb60 device_create_groups_vargs+0x11c/0x150 device_create_with_groups+0x89/0xb0 vtconsole_class_init+0xb2/0x124 do_one_initcall+0xc5/0x3ce kernel_init_freeable+0x295/0x32e kernel_init+0x11/0x11b ret_from_fork+0x3a/0x50 SOFTIRQ-ON-W at: lock_acquire+0xe3/0x200 _raw_spin_lock+0x32/0x50 klist_add_tail+0x33/0xb0 device_add+0x7f4/0xb60 device_create_groups_vargs+0x11c/0x150 device_create_with_groups+0x89/0xb0 vtconsole_class_init+0xb2/0x124 do_one_initcall+0xc5/0x3ce kernel_init_freeable+0x295/0x32e kernel_init+0x11/0x11b ret_from_fork+0x3a/0x50 INITIAL USE at: lock_acquire+0xe3/0x200 _raw_spin_lock+0x32/0x50 klist_add_tail+0x33/0xb0 device_add+0x7f4/0xb60 device_create_groups_vargs+0x11c/0x150 device_create_with_groups+0x89/0xb0 vtconsole_class_init+0xb2/0x124 do_one_initcall+0xc5/0x3ce kernel_init_freeable+0x295/0x32e kernel_init+0x11/0x11b ret_from_fork+0x3a/0x50 } ... key at: [<ffffffff83f3d900>] __key.15805+0x0/0x40 ... acquired at: __lock_acquire+0x11ed/0x1b60 lock_acquire+0xe3/0x200 _raw_spin_lock_irqsave+0x3d/0x60 klist_next+0x43/0x1d0 device_for_each_child+0x96/0x110 scsi_target_block+0x3c/0x40 [scsi_mod] fc_remote_port_delete+0xe7/0x1c0 [scsi_transport_fc] qla2x00_mark_device_lost+0x4d3/0x500 [qla2xxx] qlt_unreg_sess+0x104/0x2c0 [qla2xxx] tcm_qla2xxx_close_session+0xa2/0xb0 [tcm_qla2xxx] target_shutdown_sessions+0x17b/0x190 [target_core_mod] core_tpg_del_initiator_node_acl+0xf3/0x1f0 [target_core_mod] target_fabric_nacl_base_release+0x25/0x30 [target_core_mod] config_item_release+0x9f/0x120 [configfs] config_item_put+0x29/0x2b [configfs] configfs_rmdir+0x3d2/0x520 [configfs] vfs_rmdir+0xb3/0x1d0 do_rmdir+0x25c/0x2d0 __x64_sys_rmdir+0x24/0x30 do_syscall_64+0x77/0x220 entry_SYSCALL_64_after_hwframe+0x49/0xbe stack backtrace: CPU: 7 PID: 1478 Comm: rmdir Tainted: G W 5.1.0-rc1-dbg+ #11 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 Call Trace: dump_stack+0x86/0xca check_usage.cold.59+0x473/0x563 check_prev_add.constprop.43+0x1f1/0x1170 __lock_acquire+0x11ed/0x1b60 lock_acquire+0xe3/0x200 _raw_spin_lock_irqsave+0x3d/0x60 klist_next+0x43/0x1d0 device_for_each_child+0x96/0x110 scsi_target_block+0x3c/0x40 [scsi_mod] fc_remote_port_delete+0xe7/0x1c0 [scsi_transport_fc] qla2x00_mark_device_lost+0x4d3/0x500 [qla2xxx] qlt_unreg_sess+0x104/0x2c0 [qla2xxx] tcm_qla2xxx_close_session+0xa2/0xb0 [tcm_qla2xxx] target_shutdown_sessions+0x17b/0x190 [target_core_mod] core_tpg_del_initiator_node_acl+0xf3/0x1f0 [target_core_mod] target_fabric_nacl_base_release+0x25/0x30 [target_core_mod] config_item_release+0x9f/0x120 [configfs] config_item_put+0x29/0x2b [configfs] configfs_rmdir+0x3d2/0x520 [configfs] vfs_rmdir+0xb3/0x1d0 do_rmdir+0x25c/0x2d0 __x64_sys_rmdir+0x24/0x30 do_syscall_64+0x77/0x220 entry_SYSCALL_64_after_hwframe+0x49/0xbe Cc: Himanshu Madhani <hmadhani@marvell.com> Cc: Giridhar Malavali <gmalavali@marvell.com> Signed-off-by: Bart Van Assche <bvanassche@acm.org> Acked-by: Himanshu Madhani <hmadhani@marvell.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 300ec74 ] Since fc_remote_port_delete() must be called with interrupts enabled, do not disable interrupts when calling that function. Remove the lockin calls from around the put_sess() call. This is safe because the function that is called when the final reference is dropped, qlt_unreg_sess(), grabs the proper locks. This patch avoids that lockdep reports the following: WARNING: HARDIRQ-safe -> HARDIRQ-unsafe lock order detected kworker/2:1/62 [HC0[0]:SC0[0]:HE0:SE1] is trying to acquire: 0000000009e679b3 (&(&k->k_lock)->rlock){+.+.}, at: klist_next+0x43/0x1d0 and this task is already holding: 00000000a033b71c (&(&ha->tgt.sess_lock)->rlock){-...}, at: qla24xx_delete_sess_fn+0x55/0xf0 [qla2xxx_scst] which would create a new lock dependency: (&(&ha->tgt.sess_lock)->rlock){-...} -> (&(&k->k_lock)->rlock){+.+.} but this new dependency connects a HARDIRQ-irq-safe lock: (&(&ha->tgt.sess_lock)->rlock){-...} ... which became HARDIRQ-irq-safe at: lock_acquire+0xe3/0x200 _raw_spin_lock_irqsave+0x3d/0x60 qla24xx_report_id_acquisition+0xa69/0xe30 [qla2xxx_scst] qla24xx_process_response_queue+0x69e/0x1270 [qla2xxx_scst] qla24xx_msix_rsp_q+0x79/0xf0 [qla2xxx_scst] __handle_irq_event_percpu+0x79/0x3c0 handle_irq_event_percpu+0x70/0xf0 handle_irq_event+0x5a/0x8b handle_edge_irq+0x12c/0x310 handle_irq+0x192/0x20a do_IRQ+0x73/0x160 ret_from_intr+0x0/0x1d default_idle+0x23/0x1f0 arch_cpu_idle+0x15/0x20 default_idle_call+0x35/0x40 do_idle+0x2bb/0x2e0 cpu_startup_entry+0x1d/0x20 start_secondary+0x2a8/0x320 secondary_startup_64+0xa4/0xb0 to a HARDIRQ-irq-unsafe lock: (&(&k->k_lock)->rlock){+.+.} ... which became HARDIRQ-irq-unsafe at: ... lock_acquire+0xe3/0x200 _raw_spin_lock+0x32/0x50 klist_add_tail+0x33/0xb0 device_add+0x7e1/0xb50 device_create_groups_vargs+0x11c/0x150 device_create_with_groups+0x89/0xb0 vtconsole_class_init+0xb2/0x124 do_one_initcall+0xc5/0x3ce kernel_init_freeable+0x295/0x32e kernel_init+0x11/0x11b ret_from_fork+0x3a/0x50 other info that might help us debug this: Possible interrupt unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&(&k->k_lock)->rlock); local_irq_disable(); lock(&(&ha->tgt.sess_lock)->rlock); lock(&(&k->k_lock)->rlock); <Interrupt> lock(&(&ha->tgt.sess_lock)->rlock); *** DEADLOCK *** 3 locks held by kworker/2:1/62: #0: 00000000a4319c16 ((wq_completion)"qla2xxx_wq"){+.+.}, at: process_one_work+0x437/0xa80 #1: 00000000ffa34c42 ((work_completion)(&sess->del_work)){+.+.}, at: process_one_work+0x437/0xa80 #2: 00000000a033b71c (&(&ha->tgt.sess_lock)->rlock){-...}, at: qla24xx_delete_sess_fn+0x55/0xf0 [qla2xxx_scst] the dependencies between HARDIRQ-irq-safe lock and the holding lock: -> (&(&ha->tgt.sess_lock)->rlock){-...} ops: 8 { IN-HARDIRQ-W at: lock_acquire+0xe3/0x200 _raw_spin_lock_irqsave+0x3d/0x60 qla24xx_report_id_acquisition+0xa69/0xe30 [qla2xxx_scst] qla24xx_process_response_queue+0x69e/0x1270 [qla2xxx_scst] qla24xx_msix_rsp_q+0x79/0xf0 [qla2xxx_scst] __handle_irq_event_percpu+0x79/0x3c0 handle_irq_event_percpu+0x70/0xf0 handle_irq_event+0x5a/0x8b handle_edge_irq+0x12c/0x310 handle_irq+0x192/0x20a do_IRQ+0x73/0x160 ret_from_intr+0x0/0x1d default_idle+0x23/0x1f0 arch_cpu_idle+0x15/0x20 default_idle_call+0x35/0x40 do_idle+0x2bb/0x2e0 cpu_startup_entry+0x1d/0x20 start_secondary+0x2a8/0x320 secondary_startup_64+0xa4/0xb0 INITIAL USE at: lock_acquire+0xe3/0x200 _raw_spin_lock_irqsave+0x3d/0x60 qla24xx_report_id_acquisition+0xa69/0xe30 [qla2xxx_scst] qla24xx_process_response_queue+0x69e/0x1270 [qla2xxx_scst] qla24xx_msix_rsp_q+0x79/0xf0 [qla2xxx_scst] __handle_irq_event_percpu+0x79/0x3c0 handle_irq_event_percpu+0x70/0xf0 handle_irq_event+0x5a/0x8b handle_edge_irq+0x12c/0x310 handle_irq+0x192/0x20a do_IRQ+0x73/0x160 ret_from_intr+0x0/0x1d default_idle+0x23/0x1f0 arch_cpu_idle+0x15/0x20 default_idle_call+0x35/0x40 do_idle+0x2bb/0x2e0 cpu_startup_entry+0x1d/0x20 start_secondary+0x2a8/0x320 secondary_startup_64+0xa4/0xb0 } ... key at: [<ffffffffa0c0d080>] __key.85462+0x0/0xfffffffffff7df80 [qla2xxx_scst] ... acquired at: lock_acquire+0xe3/0x200 _raw_spin_lock_irqsave+0x3d/0x60 klist_next+0x43/0x1d0 device_for_each_child+0x96/0x110 scsi_target_block+0x3c/0x40 [scsi_mod] fc_remote_port_delete+0xe7/0x1c0 [scsi_transport_fc] qla2x00_mark_device_lost+0xa0b/0xa30 [qla2xxx_scst] qlt_unreg_sess+0x1c6/0x380 [qla2xxx_scst] qla24xx_delete_sess_fn+0xe6/0xf0 [qla2xxx_scst] process_one_work+0x511/0xa80 worker_thread+0x67/0x5b0 kthread+0x1d2/0x1f0 ret_from_fork+0x3a/0x50 the dependencies between the lock to be acquired and HARDIRQ-irq-unsafe lock: -> (&(&k->k_lock)->rlock){+.+.} ops: 13831 { HARDIRQ-ON-W at: lock_acquire+0xe3/0x200 _raw_spin_lock+0x32/0x50 klist_add_tail+0x33/0xb0 device_add+0x7e1/0xb50 device_create_groups_vargs+0x11c/0x150 device_create_with_groups+0x89/0xb0 vtconsole_class_init+0xb2/0x124 do_one_initcall+0xc5/0x3ce kernel_init_freeable+0x295/0x32e kernel_init+0x11/0x11b ret_from_fork+0x3a/0x50 SOFTIRQ-ON-W at: lock_acquire+0xe3/0x200 _raw_spin_lock+0x32/0x50 klist_add_tail+0x33/0xb0 device_add+0x7e1/0xb50 device_create_groups_vargs+0x11c/0x150 device_create_with_groups+0x89/0xb0 vtconsole_class_init+0xb2/0x124 do_one_initcall+0xc5/0x3ce kernel_init_freeable+0x295/0x32e kernel_init+0x11/0x11b ret_from_fork+0x3a/0x50 INITIAL USE at: lock_acquire+0xe3/0x200 _raw_spin_lock+0x32/0x50 klist_add_tail+0x33/0xb0 device_add+0x7e1/0xb50 device_create_groups_vargs+0x11c/0x150 device_create_with_groups+0x89/0xb0 vtconsole_class_init+0xb2/0x124 do_one_initcall+0xc5/0x3ce kernel_init_freeable+0x295/0x32e kernel_init+0x11/0x11b ret_from_fork+0x3a/0x50 } ... key at: [<ffffffff83ed8780>] __key.15491+0x0/0x40 ... acquired at: lock_acquire+0xe3/0x200 _raw_spin_lock_irqsave+0x3d/0x60 klist_next+0x43/0x1d0 device_for_each_child+0x96/0x110 scsi_target_block+0x3c/0x40 [scsi_mod] fc_remote_port_delete+0xe7/0x1c0 [scsi_transport_fc] qla2x00_mark_device_lost+0xa0b/0xa30 [qla2xxx_scst] qlt_unreg_sess+0x1c6/0x380 [qla2xxx_scst] qla24xx_delete_sess_fn+0xe6/0xf0 [qla2xxx_scst] process_one_work+0x511/0xa80 worker_thread+0x67/0x5b0 kthread+0x1d2/0x1f0 ret_from_fork+0x3a/0x50 stack backtrace: CPU: 2 PID: 62 Comm: kworker/2:1 Tainted: G O 5.0.7-dbg+ #8 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 Workqueue: qla2xxx_wq qla24xx_delete_sess_fn [qla2xxx_scst] Call Trace: dump_stack+0x86/0xca check_usage.cold.52+0x473/0x563 __lock_acquire+0x11c0/0x23e0 lock_acquire+0xe3/0x200 _raw_spin_lock_irqsave+0x3d/0x60 klist_next+0x43/0x1d0 device_for_each_child+0x96/0x110 scsi_target_block+0x3c/0x40 [scsi_mod] fc_remote_port_delete+0xe7/0x1c0 [scsi_transport_fc] qla2x00_mark_device_lost+0xa0b/0xa30 [qla2xxx_scst] qlt_unreg_sess+0x1c6/0x380 [qla2xxx_scst] qla24xx_delete_sess_fn+0xe6/0xf0 [qla2xxx_scst] process_one_work+0x511/0xa80 worker_thread+0x67/0x5b0 kthread+0x1d2/0x1f0 ret_from_fork+0x3a/0x50 Cc: Himanshu Madhani <hmadhani@marvell.com> Cc: Giridhar Malavali <gmalavali@marvell.com> Signed-off-by: Bart Van Assche <bvanassche@acm.org> Acked-by: Himanshu Madhani <hmadhani@marvell.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ff612ba ] We've been seeing the following sporadically throughout our fleet panic: kernel BUG at fs/btrfs/relocation.c:4584! netversion: 5.0-0 Backtrace: #0 [ffffc90003adb880] machine_kexec at ffffffff81041da8 #1 [ffffc90003adb8c8] __crash_kexec at ffffffff8110396c #2 [ffffc90003adb988] crash_kexec at ffffffff811048ad #3 [ffffc90003adb9a0] oops_end at ffffffff8101c19a #4 [ffffc90003adb9c0] do_trap at ffffffff81019114 #5 [ffffc90003adba00] do_error_trap at ffffffff810195d0 #6 [ffffc90003adbab0] invalid_op at ffffffff81a00a9b [exception RIP: btrfs_reloc_cow_block+692] RIP: ffffffff8143b614 RSP: ffffc90003adbb68 RFLAGS: 00010246 RAX: fffffffffffffff7 RBX: ffff8806b9c32000 RCX: ffff8806aad00690 RDX: ffff880850b295e0 RSI: ffff8806b9c32000 RDI: ffff88084f205bd0 RBP: ffff880849415000 R8: ffffc90003adbbe0 R9: ffff88085ac90000 R10: ffff8805f7369140 R11: 0000000000000000 R12: ffff880850b295e0 R13: ffff88084f205bd0 R14: 0000000000000000 R15: 0000000000000000 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #7 [ffffc90003adbbb0] __btrfs_cow_block at ffffffff813bf1cd #8 [ffffc90003adbc28] btrfs_cow_block at ffffffff813bf4b3 #9 [ffffc90003adbc78] btrfs_search_slot at ffffffff813c2e6c The way relocation moves data extents is by creating a reloc inode and preallocating extents in this inode and then copying the data into these preallocated extents. Once we've done this for all of our extents, we'll write out these dirty pages, which marks the extent written, and goes into btrfs_reloc_cow_block(). From here we get our current reloc_control, which _should_ match the reloc_control for the current block group we're relocating. However if we get an ENOSPC in this path at some point we'll bail out, never initiating writeback on this inode. Not a huge deal, unless we happen to be doing relocation on a different block group, and this block group is now rc->stage == UPDATE_DATA_PTRS. This trips the BUG_ON() in btrfs_reloc_cow_block(), because we expect to be done modifying the data inode. We are in fact done modifying the metadata for the data inode we're currently using, but not the one from the failed block group, and thus we BUG_ON(). (This happens when writeback finishes for extents from the previous group, when we are at btrfs_finish_ordered_io() which updates the data reloc tree (inode item, drops/adds extent items, etc).) Fix this by writing out the reloc data inode always, and then breaking out of the loop after that point to keep from tripping this BUG_ON() later. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> [ add note from Filipe ] Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a9fd095 ] Leaving dev_init_lock mutex locked in probe causes BUG and a WARNING when kernel is compiled with CONFIG_PROVE_LOCKING. Convert mutex to completion which silences those warnings and improves code readability. Fix below errors when connecting the USB WiFi dongle: brcmfmac: brcmf_fw_alloc_request: using brcm/brcmfmac43143 for chip BCM43143/2 BUG: workqueue leaked lock or atomic: kworker/0:2/0x00000000/434 last function: hub_event 1 lock held by kworker/0:2/434: #0: 18d5dcdf (&devinfo->dev_init_lock){+.+.}, at: brcmf_usb_probe+0x78/0x550 [brcmfmac] CPU: 0 PID: 434 Comm: kworker/0:2 Not tainted 4.19.23-00084-g454a789-dirty torvalds#123 Hardware name: Freescale i.MX6 Quad/DualLite (Device Tree) Workqueue: usb_hub_wq hub_event [<8011237c>] (unwind_backtrace) from [<8010d74c>] (show_stack+0x10/0x14) [<8010d74c>] (show_stack) from [<809c4324>] (dump_stack+0xa8/0xd4) [<809c4324>] (dump_stack) from [<8014195c>] (process_one_work+0x710/0x808) [<8014195c>] (process_one_work) from [<80141a80>] (worker_thread+0x2c/0x564) [<80141a80>] (worker_thread) from [<80147bcc>] (kthread+0x13c/0x16c) [<80147bcc>] (kthread) from [<801010b4>] (ret_from_fork+0x14/0x20) Exception stack(0xed1d9fb0 to 0xed1d9ff8) 9fa0: 00000000 00000000 00000000 00000000 9fc0: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 9fe0: 00000000 00000000 00000000 00000000 00000013 00000000 ====================================================== WARNING: possible circular locking dependency detected 4.19.23-00084-g454a789-dirty torvalds#123 Not tainted ------------------------------------------------------ kworker/0:2/434 is trying to acquire lock: e29cf799 ((wq_completion)"events"){+.+.}, at: process_one_work+0x174/0x808 but task is already holding lock: 18d5dcdf (&devinfo->dev_init_lock){+.+.}, at: brcmf_usb_probe+0x78/0x550 [brcmfmac] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (&devinfo->dev_init_lock){+.+.}: mutex_lock_nested+0x1c/0x24 brcmf_usb_probe+0x78/0x550 [brcmfmac] usb_probe_interface+0xc0/0x1bc really_probe+0x228/0x2c0 __driver_attach+0xe4/0xe8 bus_for_each_dev+0x68/0xb4 bus_add_driver+0x19c/0x214 driver_register+0x78/0x110 usb_register_driver+0x84/0x148 process_one_work+0x228/0x808 worker_thread+0x2c/0x564 kthread+0x13c/0x16c ret_from_fork+0x14/0x20 (null) -> #1 (brcmf_driver_work){+.+.}: worker_thread+0x2c/0x564 kthread+0x13c/0x16c ret_from_fork+0x14/0x20 (null) -> #0 ((wq_completion)"events"){+.+.}: process_one_work+0x1b8/0x808 worker_thread+0x2c/0x564 kthread+0x13c/0x16c ret_from_fork+0x14/0x20 (null) other info that might help us debug this: Chain exists of: (wq_completion)"events" --> brcmf_driver_work --> &devinfo->dev_init_lock Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&devinfo->dev_init_lock); lock(brcmf_driver_work); lock(&devinfo->dev_init_lock); lock((wq_completion)"events"); *** DEADLOCK *** 1 lock held by kworker/0:2/434: #0: 18d5dcdf (&devinfo->dev_init_lock){+.+.}, at: brcmf_usb_probe+0x78/0x550 [brcmfmac] stack backtrace: CPU: 0 PID: 434 Comm: kworker/0:2 Not tainted 4.19.23-00084-g454a789-dirty torvalds#123 Hardware name: Freescale i.MX6 Quad/DualLite (Device Tree) Workqueue: events request_firmware_work_func [<8011237c>] (unwind_backtrace) from [<8010d74c>] (show_stack+0x10/0x14) [<8010d74c>] (show_stack) from [<809c4324>] (dump_stack+0xa8/0xd4) [<809c4324>] (dump_stack) from [<80172838>] (print_circular_bug+0x210/0x330) [<80172838>] (print_circular_bug) from [<80175940>] (__lock_acquire+0x160c/0x1a30) [<80175940>] (__lock_acquire) from [<8017671c>] (lock_acquire+0xe0/0x268) [<8017671c>] (lock_acquire) from [<80141404>] (process_one_work+0x1b8/0x808) [<80141404>] (process_one_work) from [<80141a80>] (worker_thread+0x2c/0x564) [<80141a80>] (worker_thread) from [<80147bcc>] (kthread+0x13c/0x16c) [<80147bcc>] (kthread) from [<801010b4>] (ret_from_fork+0x14/0x20) Exception stack(0xed1d9fb0 to 0xed1d9ff8) 9fa0: 00000000 00000000 00000000 00000000 9fc0: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 9fe0: 00000000 00000000 00000000 00000000 00000013 00000000 Signed-off-by: Piotr Figiel <p.figiel@camlintechnologies.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
commit c952b35 upstream. bpf/btf write_* functions need ff->ph->env. With this missing, pipe-mode (perf record -o -) would crash like: Program terminated with signal SIGSEGV, Segmentation fault. This patch assign proper ph value to ff. Committer testing: (gdb) run record -o - Starting program: /root/bin/perf record -o - PERFILE2 <SNIP start of perf.data headers> Thread 1 "perf" received signal SIGSEGV, Segmentation fault. __do_write_buf (size=4, buf=0x160, ff=0x7fffffff8f80) at util/header.c:126 126 memcpy(ff->buf + ff->offset, buf, size); (gdb) bt #0 __do_write_buf (size=4, buf=0x160, ff=0x7fffffff8f80) at util/header.c:126 #1 do_write (ff=ff@entry=0x7fffffff8f80, buf=buf@entry=0x160, size=4) at util/header.c:137 #2 0x00000000004eddba in write_bpf_prog_info (ff=0x7fffffff8f80, evlist=<optimized out>) at util/header.c:912 #3 0x00000000004f69d7 in perf_event__synthesize_features (tool=tool@entry=0x97cc00 <record>, session=session@entry=0x7fffe9c6d010, evlist=0x7fffe9cae010, process=process@entry=0x4435d0 <process_synthesized_event>) at util/header.c:3695 #4 0x0000000000443c79 in record__synthesize (tail=tail@entry=false, rec=0x97cc00 <record>) at builtin-record.c:1214 #5 0x0000000000444ec9 in __cmd_record (rec=0x97cc00 <record>, argv=<optimized out>, argc=0) at builtin-record.c:1435 #6 cmd_record (argc=0, argv=<optimized out>) at builtin-record.c:2450 #7 0x00000000004ae3e9 in run_builtin (p=p@entry=0x98e058 <commands+216>, argc=argc@entry=3, argv=0x7fffffffd670) at perf.c:304 #8 0x000000000042eded in handle_internal_command (argv=<optimized out>, argc=<optimized out>) at perf.c:356 #9 run_argv (argcp=<optimized out>, argv=<optimized out>) at perf.c:400 #10 main (argc=3, argv=<optimized out>) at perf.c:522 (gdb) After the patch the SEGSEGV is gone. Reported-by: David Carrillo Cisneros <davidca@fb.com> Signed-off-by: Song Liu <songliubraving@fb.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: kernel-team@fb.com Cc: stable@vger.kernel.org # v5.1+ Fixes: 606f972 ("perf bpf: Save bpf_prog_info information as headers to perf.data") Link: http://lkml.kernel.org/r/20190620010453.4118689-1-songliubraving@fb.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pablo Neira Ayuso says: ==================== flow_offload hardware priority fixes This patchset contains two updates for the flow_offload users: 1) Pass the major tc priority to drivers so they do not have to lshift it. This is a preparation patch for the fix coming in patch #2. 2) Set the hardware priority from the netfilter basechain priority, some drivers break when using the existing hardware priority number that is set to zero. v5: fix patch 2/2 to address a clang warning and to simplify the priority mapping. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
Revert the commit bd293d0. The proper fix has been made available with commit d0a255e ("loop: set PF_MEMALLOC_NOIO for the worker thread"). Note that the fix offered by commit bd293d0 doesn't really prevent the deadlock from occuring - if we look at the stacktrace reported by Junxiao Bi, we see that it hangs in bit_wait_io and not on the mutex - i.e. it has already successfully taken the mutex. Changing the mutex from mutex_lock to mutex_trylock won't help with deadlocks that happen afterwards. PID: 474 TASK: ffff8813e11f4600 CPU: 10 COMMAND: "kswapd0" #0 [ffff8813dedfb938] __schedule at ffffffff8173f405 #1 [ffff8813dedfb990] schedule at ffffffff8173fa27 #2 [ffff8813dedfb9b0] schedule_timeout at ffffffff81742fec #3 [ffff8813dedfba60] io_schedule_timeout at ffffffff8173f186 #4 [ffff8813dedfbaa0] bit_wait_io at ffffffff8174034f #5 [ffff8813dedfbac0] __wait_on_bit at ffffffff8173fec8 #6 [ffff8813dedfbb10] out_of_line_wait_on_bit at ffffffff8173ff81 #7 [ffff8813dedfbb90] __make_buffer_clean at ffffffffa038736f [dm_bufio] #8 [ffff8813dedfbbb0] __try_evict_buffer at ffffffffa0387bb8 [dm_bufio] #9 [ffff8813dedfbbd0] dm_bufio_shrink_scan at ffffffffa0387cc3 [dm_bufio] #10 [ffff8813dedfbc40] shrink_slab at ffffffff811a87ce #11 [ffff8813dedfbd30] shrink_zone at ffffffff811ad778 #12 [ffff8813dedfbdc0] kswapd at ffffffff811ae92f #13 [ffff8813dedfbec0] kthread at ffffffff810a8428 #14 [ffff8813dedfbf50] ret_from_fork at ffffffff81745242 Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Cc: stable@vger.kernel.org Fixes: bd293d0 ("dm bufio: fix deadlock with loop device") Depends-on: d0a255e ("loop: set PF_MEMALLOC_NOIO for the worker thread") Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Calling ceph_buffer_put() in __ceph_setxattr() may end up freeing the i_xattrs.prealloc_blob buffer while holding the i_ceph_lock. This can be fixed by postponing the call until later, when the lock is released. The following backtrace was triggered by fstests generic/117. BUG: sleeping function called from invalid context at mm/vmalloc.c:2283 in_atomic(): 1, irqs_disabled(): 0, pid: 650, name: fsstress 3 locks held by fsstress/650: #0: 00000000870a0fe8 (sb_writers#8){.+.+}, at: mnt_want_write+0x20/0x50 #1: 00000000ba0c4c74 (&type->i_mutex_dir_key#6){++++}, at: vfs_setxattr+0x55/0xa0 #2: 000000008dfbb3f2 (&(&ci->i_ceph_lock)->rlock){+.+.}, at: __ceph_setxattr+0x297/0x810 CPU: 1 PID: 650 Comm: fsstress Not tainted 5.2.0+ torvalds#437 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x67/0x90 ___might_sleep.cold+0x9f/0xb1 vfree+0x4b/0x60 ceph_buffer_release+0x1b/0x60 __ceph_setxattr+0x2b4/0x810 __vfs_setxattr+0x66/0x80 __vfs_setxattr_noperm+0x59/0xf0 vfs_setxattr+0x81/0xa0 setxattr+0x115/0x230 ? filename_lookup+0xc9/0x140 ? rcu_read_lock_sched_held+0x74/0x80 ? rcu_sync_lockdep_assert+0x2e/0x60 ? __sb_start_write+0x142/0x1a0 ? mnt_want_write+0x20/0x50 path_setxattr+0xba/0xd0 __x64_sys_lsetxattr+0x24/0x30 do_syscall_64+0x50/0x1c0 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7ff23514359a Signed-off-by: Luis Henriques <lhenriques@suse.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
…s_blob() Calling ceph_buffer_put() in __ceph_build_xattrs_blob() may result in freeing the i_xattrs.blob buffer while holding the i_ceph_lock. This can be fixed by having this function returning the old blob buffer and have the callers of this function freeing it when the lock is released. The following backtrace was triggered by fstests generic/117. BUG: sleeping function called from invalid context at mm/vmalloc.c:2283 in_atomic(): 1, irqs_disabled(): 0, pid: 649, name: fsstress 4 locks held by fsstress/649: #0: 00000000a7478e7e (&type->s_umount_key#19){++++}, at: iterate_supers+0x77/0xf0 #1: 00000000f8de1423 (&(&ci->i_ceph_lock)->rlock){+.+.}, at: ceph_check_caps+0x7b/0xc60 #2: 00000000562f2b27 (&s->s_mutex){+.+.}, at: ceph_check_caps+0x3bd/0xc60 #3: 00000000f83ce16a (&mdsc->snap_rwsem){++++}, at: ceph_check_caps+0x3ed/0xc60 CPU: 1 PID: 649 Comm: fsstress Not tainted 5.2.0+ torvalds#439 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x67/0x90 ___might_sleep.cold+0x9f/0xb1 vfree+0x4b/0x60 ceph_buffer_release+0x1b/0x60 __ceph_build_xattrs_blob+0x12b/0x170 __send_cap+0x302/0x540 ? __lock_acquire+0x23c/0x1e40 ? __mark_caps_flushing+0x15c/0x280 ? _raw_spin_unlock+0x24/0x30 ceph_check_caps+0x5f0/0xc60 ceph_flush_dirty_caps+0x7c/0x150 ? __ia32_sys_fdatasync+0x20/0x20 ceph_sync_fs+0x5a/0x130 iterate_supers+0x8f/0xf0 ksys_sync+0x4f/0xb0 __ia32_sys_sync+0xa/0x10 do_syscall_64+0x50/0x1c0 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7fc6409ab617 Signed-off-by: Luis Henriques <lhenriques@suse.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Calling ceph_buffer_put() in fill_inode() may result in freeing the i_xattrs.blob buffer while holding the i_ceph_lock. This can be fixed by postponing the call until later, when the lock is released. The following backtrace was triggered by fstests generic/070. BUG: sleeping function called from invalid context at mm/vmalloc.c:2283 in_atomic(): 1, irqs_disabled(): 0, pid: 3852, name: kworker/0:4 6 locks held by kworker/0:4/3852: #0: 000000004270f6bb ((wq_completion)ceph-msgr){+.+.}, at: process_one_work+0x1b8/0x5f0 #1: 00000000eb420803 ((work_completion)(&(&con->work)->work)){+.+.}, at: process_one_work+0x1b8/0x5f0 #2: 00000000be1c53a4 (&s->s_mutex){+.+.}, at: dispatch+0x288/0x1476 #3: 00000000559cb958 (&mdsc->snap_rwsem){++++}, at: dispatch+0x2eb/0x1476 #4: 000000000d5ebbae (&req->r_fill_mutex){+.+.}, at: dispatch+0x2fc/0x1476 #5: 00000000a83d0514 (&(&ci->i_ceph_lock)->rlock){+.+.}, at: fill_inode.isra.0+0xf8/0xf70 CPU: 0 PID: 3852 Comm: kworker/0:4 Not tainted 5.2.0+ torvalds#441 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58-prebuilt.qemu.org 04/01/2014 Workqueue: ceph-msgr ceph_con_workfn Call Trace: dump_stack+0x67/0x90 ___might_sleep.cold+0x9f/0xb1 vfree+0x4b/0x60 ceph_buffer_release+0x1b/0x60 fill_inode.isra.0+0xa9b/0xf70 ceph_fill_trace+0x13b/0xc70 ? dispatch+0x2eb/0x1476 dispatch+0x320/0x1476 ? __mutex_unlock_slowpath+0x4d/0x2a0 ceph_con_workfn+0xc97/0x2ec0 ? process_one_work+0x1b8/0x5f0 process_one_work+0x244/0x5f0 worker_thread+0x4d/0x3e0 kthread+0x105/0x140 ? process_one_work+0x5f0/0x5f0 ? kthread_park+0x90/0x90 ret_from_fork+0x3a/0x50 Signed-off-by: Luis Henriques <lhenriques@suse.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Hayes Wang says: ==================== r8152: fix side effect v3: Update the commit message for patch #1. v2: Replace patch #2 with "r8152: remove calling netif_napi_del". v1: The commit 0ee1f47 ("r8152: napi hangup fix after disconnect") add a check to avoid using napi_disable after netif_napi_del. However, the commit ffa9fec ("r8152: set RTL8152_UNPLUG only for real disconnection") let the check useless. Therefore, I revert commit 0ee1f47 ("r8152: napi hangup fix after disconnect") first, and add another patch to fix it. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
…#2] When a local endpoint is ceases to be in use, such as when the kafs module is unloaded, the kernel will emit an assertion failure if there are any outstanding client connections: rxrpc: Assertion failed ------------[ cut here ]------------ kernel BUG at net/rxrpc/local_object.c:433! and even beyond that, will evince other oopses if there are service connections still present. Fix this by: (1) Removing the triggering of connection reaping when an rxrpc socket is released. These don't actually clean up the connections anyway - and further, the local endpoint may still be in use through another socket. (2) Mark the local endpoint as dead when we start the process of tearing it down. (3) When destroying a local endpoint, strip all of its client connections from the idle list and discard the ref on each that the list was holding. (4) When destroying a local endpoint, call the service connection reaper directly (rather than through a workqueue) to immediately kill off all outstanding service connections. (5) Make the service connection reaper reap connections for which the local endpoint is marked dead. Only after destroying the connections can we close the socket lest we get an oops in a workqueue that's looking at a connection or a peer. Fixes: 3d18cbb ("rxrpc: Fix conn expiry timers") Signed-off-by: David Howells <dhowells@redhat.com> Tested-by: Marc Dionne <marc.dionne@auristor.com> Signed-off-by: David S. Miller <davem@davemloft.net>
Pull networking fixes from David Miller: 1) Fix some length checks during OGM processing in batman-adv, from Sven Eckelmann. 2) Fix regression that caused netfilter conntrack sysctls to not be per-netns any more. From Florian Westphal. 3) Use after free in netpoll, from Feng Sun. 4) Guard destruction of pfifo_fast per-cpu qdisc stats with qdisc_is_percpu_stats(), from Davide Caratti. Similar bug is fixed in pfifo_fast_enqueue(). 5) Fix memory leak in mld_del_delrec(), from Eric Dumazet. 6) Handle neigh events on internal ports correctly in nfp, from John Hurley. 7) Clear SKB timestamp in NF flow table code so that it does not confuse fq scheduler. From Florian Westphal. 8) taprio destroy can crash if it is invoked in a failure path of taprio_init(), because the list head isn't setup properly yet and the list del is unconditional. Perform the list add earlier to address this. From Vladimir Oltean. 9) Make sure to reapply vlan filters on device up, in aquantia driver. From Dmitry Bogdanov. 10) sgiseeq driver releases DMA memory using free_page() instead of dma_free_attrs(). From Christophe JAILLET. * git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (58 commits) net: seeq: Fix the function used to release some memory in an error handling path enetc: Add missing call to 'pci_free_irq_vectors()' in probe and remove functions net: bcmgenet: use ethtool_op_get_ts_info() tc-testing: don't hardcode 'ip' in nsPlugin.py net: dsa: microchip: add KSZ8563 compatibility string dt-bindings: net: dsa: document additional Microchip KSZ8563 switch net: aquantia: fix out of memory condition on rx side net: aquantia: linkstate irq should be oneshot net: aquantia: reapply vlan filters on up net: aquantia: fix limit of vlan filters net: aquantia: fix removal of vlan 0 net/sched: cbs: Set default link speed to 10 Mbps in cbs_set_port_rate taprio: Set default link speed to 10 Mbps in taprio_set_picos_per_byte taprio: Fix kernel panic in taprio_destroy net: dsa: microchip: fill regmap_config name rxrpc: Fix lack of conn cleanup when local endpoint is cleaned up [ver #2] net: stmmac: dwmac-rk: Don't fail if phy regulator is absent amd-xgbe: Fix error path in xgbe_mod_init() netfilter: nft_meta_bridge: Fix get NFT_META_BRI_IIFVPROTO in network byteorder mac80211: Correctly set noencrypt for PAE frames ...
syzbot reported: BUG: KMSAN: uninit-value in capi_write+0x791/0xa90 drivers/isdn/capi/capi.c:700 CPU: 0 PID: 10025 Comm: syz-executor379 Not tainted 4.20.0-rc7+ #2 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x173/0x1d0 lib/dump_stack.c:113 kmsan_report+0x12e/0x2a0 mm/kmsan/kmsan.c:613 __msan_warning+0x82/0xf0 mm/kmsan/kmsan_instr.c:313 capi_write+0x791/0xa90 drivers/isdn/capi/capi.c:700 do_loop_readv_writev fs/read_write.c:703 [inline] do_iter_write+0x83e/0xd80 fs/read_write.c:961 vfs_writev fs/read_write.c:1004 [inline] do_writev+0x397/0x840 fs/read_write.c:1039 __do_sys_writev fs/read_write.c:1112 [inline] __se_sys_writev+0x9b/0xb0 fs/read_write.c:1109 __x64_sys_writev+0x4a/0x70 fs/read_write.c:1109 do_syscall_64+0xbc/0xf0 arch/x86/entry/common.c:291 entry_SYSCALL_64_after_hwframe+0x63/0xe7 [...] The problem is that capi_write() is reading past the end of the message. Fix it by checking the message's length in the needed places. Reported-and-tested-by: syzbot+0849c524d9c634f5ae66@syzkaller.appspotmail.com Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
…empts The lock_extent_buffer_io() returns 1 to the caller to tell it everything went fine and the callers needs to start writeback for the extent buffer (submit a bio, etc), 0 to tell the caller everything went fine but it does not need to start writeback for the extent buffer, and a negative value if some error happened. When it's about to return 1 it tries to lock all pages, and if a try lock on a page fails, and we didn't flush any existing bio in our "epd", it calls flush_write_bio(epd) and overwrites the return value of 1 to 0 or an error. The page might have been locked elsewhere, not with the goal of starting writeback of the extent buffer, and even by some code other than btrfs, like page migration for example, so it does not mean the writeback of the extent buffer was already started by some other task, so returning a 0 tells the caller (btree_write_cache_pages()) to not start writeback for the extent buffer. Note that epd might currently have either no bio, so flush_write_bio() returns 0 (success) or it might have a bio for another extent buffer with a lower index (logical address). Since we return 0 with the EXTENT_BUFFER_WRITEBACK bit set on the extent buffer and writeback is never started for the extent buffer, future attempts to writeback the extent buffer will hang forever waiting on that bit to be cleared, since it can only be cleared after writeback completes. Such hang is reported with a trace like the following: [49887.347053] INFO: task btrfs-transacti:1752 blocked for more than 122 seconds. [49887.347059] Not tainted 5.2.13-gentoo #2 [49887.347060] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [49887.347062] btrfs-transacti D 0 1752 2 0x80004000 [49887.347064] Call Trace: [49887.347069] ? __schedule+0x265/0x830 [49887.347071] ? bit_wait+0x50/0x50 [49887.347072] ? bit_wait+0x50/0x50 [49887.347074] schedule+0x24/0x90 [49887.347075] io_schedule+0x3c/0x60 [49887.347077] bit_wait_io+0x8/0x50 [49887.347079] __wait_on_bit+0x6c/0x80 [49887.347081] ? __lock_release.isra.29+0x155/0x2d0 [49887.347083] out_of_line_wait_on_bit+0x7b/0x80 [49887.347084] ? var_wake_function+0x20/0x20 [49887.347087] lock_extent_buffer_for_io+0x28c/0x390 [49887.347089] btree_write_cache_pages+0x18e/0x340 [49887.347091] do_writepages+0x29/0xb0 [49887.347093] ? kmem_cache_free+0x132/0x160 [49887.347095] ? convert_extent_bit+0x544/0x680 [49887.347097] filemap_fdatawrite_range+0x70/0x90 [49887.347099] btrfs_write_marked_extents+0x53/0x120 [49887.347100] btrfs_write_and_wait_transaction.isra.4+0x38/0xa0 [49887.347102] btrfs_commit_transaction+0x6bb/0x990 [49887.347103] ? start_transaction+0x33e/0x500 [49887.347105] transaction_kthread+0x139/0x15c So fix this by not overwriting the return value (ret) with the result from flush_write_bio(). We also need to clear the EXTENT_BUFFER_WRITEBACK bit in case flush_write_bio() returns an error, otherwise it will hang any future attempts to writeback the extent buffer, and undo all work done before (set back EXTENT_BUFFER_DIRTY, etc). This is a regression introduced in the 5.2 kernel. Fixes: 2e3c251 ("btrfs: extent_io: add proper error handling to lock_extent_buffer_for_io()") Fixes: f434062 ("btrfs: extent_io: Move the BUG_ON() in flush_write_bio() one level up") Reported-by: Zdenek Sojka <zsojka@seznam.cz> Link: https://lore.kernel.org/linux-btrfs/GpO.2yos.3WGDOLpx6t%7D.1TUDYM@seznam.cz/T/#u Reported-by: Stefan Priebe - Profihost AG <s.priebe@profihost.ag> Link: https://lore.kernel.org/linux-btrfs/5c4688ac-10a7-fb07-70e8-c5d31a3fbb38@profihost.ag/T/#t Reported-by: Drazen Kacar <drazen.kacar@oradian.com> Link: https://lore.kernel.org/linux-btrfs/DB8PR03MB562876ECE2319B3E579590F799C80@DB8PR03MB5628.eurprd03.prod.outlook.com/ Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=204377 Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
I think we can conclude that the reported problem of USB freezes is fixed with the MIE workaround in commit bedacfd. It works in practice, and has been tested for several years, but it remains unsatisfactory to not precisely know the root cause of the workaround. The other topic discussed here that remains problematic for USB devices is driver memory consumption, and the total 256 KiB memory limit, but issue #17 is more relevant for that. It’s nontrivial to manually rework hundreds of USB drivers (for example wireless drivers etc.) to reduce their memory usage, although it can be done in specific cases such as the rt2x00 driver in commit 844ad98. Does anyone want to add anything to the discussion so far? If not, then I suggest proceeding with #17! |
@sp193, the NB. Some MIPS implementations also do partial write gathering and can have reads overtake writes, but I don’t think that’s the case with the IOP. Edit: Assuming the IOP is similar to the MIPS R3051, sources appear inconclusive on partial write gathering: the book See MIPS Run seems to suggest it doesn’t (p. 97) but the IDT R3051 manual says it does (p. 40). |
Ah okay. Thanks for sharing. |
Commit 05bd9f2 is a workaround for a problem whereby USB OHCI interrupts occasionally seem to disappear, which results in a device driver freeze. This bug has been present since at least the 2.6.35.14 kernel from 2010. An alternative but much less efficient workaround is to assert extra interrupts using for example a 1000 Hz timer.
USB OHCI interrupts are asserted on the I/O Processor (IOP), and then forwarded to the R5900 Emotion Engine main processor. This forwarding can be done in at least two different ways: via a mailbox (SMFLAG) register or via remote procedure calls (RPC). Both methods fail similarly, which suggests that the problem is somewhere on the IOP side.
The text was updated successfully, but these errors were encountered: