Seongju Lee
·
Junseok Lee
·
Yeonguk Yu
·
Taeri Kim
·
Kyoobin Lee
ECCV 2024
ECCV Paper
Poster
Source Code
Cite MART
This repo is the official implementation of "MART: MultiscAle Relational Transformer Networks for Multi-agent Trajectory Prediction (ECCV 2024)"
- (2024.09.19) Official repository of 🛒MART🛒 is released
- (2024.09.30) Update ECCV poster
- Set up a python environment
conda create -n mart python=3.8
conda activate mart
- Install requirements using the following command.
pip install -r requirements.txt
-
Trained and evaluated on NVIDIA GeForce RTX 3090 with python 3.8.
-
The dataset is included in
./datasets/nba/
python main_nba.py --config ./configs/mart_nba.yaml --gpu $GPU_IDs
python main_nba.py --config ./configs/mart_nba.yaml --gpu $GPU_IDs --test
- minADE_20: 0.727 [m]
- minFDE_20: 0.903 [m]
- The checkpoint is included in
./checkpoints/mart_nba_reproduce/
python main_nba.py --config ./configs/mart_nba_reproduce.yaml --gpu $GPU_IDs --test
@article{lee2024mart,
title={MART: MultiscAle Relational Transformer Networks for Multi-agent Trajectory Prediction},
author={Lee, Seongju and Lee, Junseok and Yu, Yeonguk and Kim, Taeri and Lee, Kyoobin},
journal={arXiv preprint arXiv:2407.21635},
year={2024}
}