forked from git/git
-
Notifications
You must be signed in to change notification settings - Fork 137
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
reftable/reader: introduce refcounting
It was recently reported that concurrent reads and writes may cause the reftable backend to segfault. The root cause of this is that we do not properly keep track of reftable readers across reloads. Suppose that you have a reftable iterator and then decide to reload the stack while iterating through the iterator. When the stack has been rewritten since we have created the iterator, then we would end up discarding a subset of readers that may still be in use by the iterator. The consequence is that we now try to reference deallocated memory, which of course segfaults. One way to trigger this is in t5616, where some background maintenance jobs have been leaking from one test into another. This leads to stack traces like the following one: + git -c protocol.version=0 -C pc1 fetch --filter=blob:limit=29999 --refetch origin AddressSanitizer:DEADLYSIGNAL ================================================================= ==657994==ERROR: AddressSanitizer: SEGV on unknown address 0x7fa0f0ec6089 (pc 0x55f23e52ddf9 bp 0x7ffe7bfa1700 sp 0x7ffe7bfa1700 T0) ==657994==The signal is caused by a READ memory access. #0 0x55f23e52ddf9 in get_var_int reftable/record.c:29 #1 0x55f23e53295e in reftable_decode_keylen reftable/record.c:170 #2 0x55f23e532cc0 in reftable_decode_key reftable/record.c:194 #3 0x55f23e54e72e in block_iter_next reftable/block.c:398 #4 0x55f23e5573dc in table_iter_next_in_block reftable/reader.c:240 #5 0x55f23e5573dc in table_iter_next reftable/reader.c:355 #6 0x55f23e5573dc in table_iter_next reftable/reader.c:339 #7 0x55f23e551283 in merged_iter_advance_subiter reftable/merged.c:69 #8 0x55f23e55169e in merged_iter_next_entry reftable/merged.c:123 #9 0x55f23e55169e in merged_iter_next_void reftable/merged.c:172 #10 0x55f23e537625 in reftable_iterator_next_ref reftable/generic.c:175 #11 0x55f23e2cf9c6 in reftable_ref_iterator_advance refs/reftable-backend.c:464 #12 0x55f23e2d996e in ref_iterator_advance refs/iterator.c:13 #13 0x55f23e2d996e in do_for_each_ref_iterator refs/iterator.c:452 #14 0x55f23dca6767 in get_ref_map builtin/fetch.c:623 #15 0x55f23dca6767 in do_fetch builtin/fetch.c:1659 #16 0x55f23dca6767 in fetch_one builtin/fetch.c:2133 #17 0x55f23dca6767 in cmd_fetch builtin/fetch.c:2432 #18 0x55f23dba7764 in run_builtin git.c:484 #19 0x55f23dba7764 in handle_builtin git.c:741 #20 0x55f23dbab61e in run_argv git.c:805 #21 0x55f23dbab61e in cmd_main git.c:1000 #22 0x55f23dba4781 in main common-main.c:64 #23 0x7fa0f063fc89 in __libc_start_call_main ../sysdeps/nptl/libc_start_call_main.h:58 #24 0x7fa0f063fd44 in __libc_start_main_impl ../csu/libc-start.c:360 #25 0x55f23dba6ad0 in _start (git+0xadfad0) (BuildId: 803b2b7f59beb03d7849fb8294a8e2145dd4aa27) While it is somewhat awkward that the maintenance processes survive tests in the first place, it is totally expected that reftables should work alright with concurrent writers. Seemingly they don't. The only underlying resource that we need to care about in this context is the reftable reader, which is responsible for reading a single table from disk. These readers get discarded immediately (unless reused) when calling `reftable_stack_reload()`, which is wrong. We can only close them once we know that there are no iterators using them anymore. Prepare for a fix by converting the reftable readers to be refcounted. Reported-by: Jeff King <peff@peff.net> Signed-off-by: Patrick Steinhardt <ps@pks.im> Signed-off-by: Junio C Hamano <gitster@pobox.com>
- Loading branch information
Showing
8 changed files
with
46 additions
and
25 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters