forked from git/git
-
Notifications
You must be signed in to change notification settings - Fork 160
Clarify commit-graph and grafts/replace/shallow incompatibilities #11
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Closed
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Member
|
I think this test failure is the same as the one for which I suggested a patch here. |
88546d3 to
610a4cc
Compare
c76be6c to
f4ab234
Compare
Author
|
/submit |
|
Submitted as pull.11.git.gitgitgadget@gmail.com |
1aaaa8c to
ebd3154
Compare
This is the smallest possible change that makes prepare_replace_objects work properly with arbitrary repositories. By supplying the repository as the cb_data, we do not need to modify any code in the ref iterator logic. We will likely want to do a full replacement of the ref iterator logic to provide a repository struct as a concrete parameter. Signed-off-by: Derrick Stolee <dstolee@microsoft.com>
As it exists right now, the commit-graph feature may provide inconsistent results when combined with commit grafts, replace objects, and shallow clones. Update the design document to discuss why these interactions are difficult to reconcile and how we will avoid errors by preventing updates to and reads from the commit-graph file when these other features exist. Signed-off-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Derrick Stolee <dstolee@microsoft.com>
Create new method commit_graph_compatible(r) to check if a given repository r is compatible with the commit-graph feature. Fill the method with a check to see if replace-objects exist. Also, check if the replace objects are enabled with 'read_replace_objects'. Test this interaction succeeds, including ignoring an existing commit-graph and failing to write a new commit-graph. Signed-off-by: Derrick Stolee <dstolee@microsoft.com>
Augment commit_graph_compatible(r) to return false when the given repository r has commit grafts or is a shallow clone. Test that in these situations we ignore existing commit-graph files and we do not write new commit-graph files. Signed-off-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Derrick Stolee <dstolee@microsoft.com>
Make close_commit_graph() work for arbitrary repositories. Call close_commit_graph() when about to start a rev-list walk that includes shallow commits. This is necessary in code paths that "fake" shallow commits for the sake of fetch. Specifically, test 351 in t5500-fetch-pack.sh runs git fetch --shallow-exclude one origin with a file-based transfer. When the "remote" has a commit-graph, we do not prevent the commit-graph from being loaded, but then the commits are intended to be dynamically transferred into shallow commits during get_shallow_commits_by_rev_list(). By closing the commit-graph before this call, we prevent this interaction. Signed-off-by: Derrick Stolee <dstolee@microsoft.com>
f4ab234 to
0b3b63b
Compare
838143a to
5329765
Compare
f310ce3 to
fd2e861
Compare
dscho
pushed a commit
that referenced
this pull request
Aug 29, 2023
When t5583-push-branches.sh was originally introduced via 425b4d7 (push: introduce '--branches' option, 2023-05-06), it was not leak-free. In fact, the test did not even run correctly until 022fbb6 (t5583: fix shebang line, 2023-05-12), but after applying that patch, we see a failure at t5583.8: ==2529087==ERROR: LeakSanitizer: detected memory leaks Direct leak of 384 byte(s) in 1 object(s) allocated from: #0 0x7fb536330986 in __interceptor_realloc ../../../../src/libsanitizer/lsan/lsan_interceptors.cpp:98 #1 0x55e07606cbf9 in xrealloc wrapper.c:140 #2 0x55e075fb6cb3 in prio_queue_put prio-queue.c:42 #3 0x55e075ec81cb in get_reachable_subset commit-reach.c:917 #4 0x55e075fe9cce in add_missing_tags remote.c:1518 #5 0x55e075fea1e4 in match_push_refs remote.c:1665 #6 0x55e076050a8e in transport_push transport.c:1378 #7 0x55e075e2eb74 in push_with_options builtin/push.c:401 #8 0x55e075e2edb0 in do_push builtin/push.c:458 #9 0x55e075e2ff7a in cmd_push builtin/push.c:702 #10 0x55e075d8aaf0 in run_builtin git.c:452 #11 0x55e075d8af08 in handle_builtin git.c:706 #12 0x55e075d8b12c in run_argv git.c:770 #13 0x55e075d8b6a0 in cmd_main git.c:905 #14 0x55e075e81f07 in main common-main.c:60 #15 0x7fb5360ab6c9 in __libc_start_call_main ../sysdeps/nptl/libc_start_call_main.h:58 #16 0x7fb5360ab784 in __libc_start_main_impl ../csu/libc-start.c:360 #17 0x55e075d88f40 in _start (git+0x1ff40) (BuildId: 38ad998b85a535e786129979443630d025ec2453) SUMMARY: LeakSanitizer: 384 byte(s) leaked in 1 allocation(s). This leak was addressed independently via 68b5117 (commit-reach: fix memory leak in get_reachable_subset(), 2023-06-03), which makes t5583 leak-free. But t5583 was not in the tree when 68b5117 was written, and the two only met after the latter was merged back in via 693bde4 (Merge branch 'mh/commit-reach-get-reachable-plug-leak', 2023-06-20). At that point, t5583 was leak-free. Let's mark it as such accordingly. Signed-off-by: Taylor Blau <me@ttaylorr.com> Acked-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
gitgitgadget bot
pushed a commit
that referenced
this pull request
Jun 17, 2024
Memory sanitizer (msan) is detecting a use of an uninitialized variable
(`size`) in `read_attr_from_index`:
==2268==WARNING: MemorySanitizer: use-of-uninitialized-value
#0 0x5651f3416504 in read_attr_from_index git/attr.c:868:11
#1 0x5651f3415530 in read_attr git/attr.c
#2 0x5651f3413d74 in bootstrap_attr_stack git/attr.c:968:6
#3 0x5651f3413d74 in prepare_attr_stack git/attr.c:1004:2
#4 0x5651f3413d74 in collect_some_attrs git/attr.c:1199:2
#5 0x5651f3413144 in git_check_attr git/attr.c:1345:2
#6 0x5651f34728da in convert_attrs git/convert.c:1320:2
#7 0x5651f3473425 in would_convert_to_git_filter_fd git/convert.c:1373:2
#8 0x5651f357a35e in index_fd git/object-file.c:2630:34
#9 0x5651f357aa15 in index_path git/object-file.c:2657:7
#10 0x5651f35db9d9 in add_to_index git/read-cache.c:766:7
#11 0x5651f35dc170 in add_file_to_index git/read-cache.c:799:9
#12 0x5651f321f9b2 in add_files git/builtin/add.c:346:7
#13 0x5651f321f9b2 in cmd_add git/builtin/add.c:565:18
#14 0x5651f321d327 in run_builtin git/git.c:474:11
#15 0x5651f321bc9e in handle_builtin git/git.c:729:3
#16 0x5651f321a792 in run_argv git/git.c:793:4
#17 0x5651f321a792 in cmd_main git/git.c:928:19
#18 0x5651f33dde1f in main git/common-main.c:62:11
The issue exists because `size` is an output parameter from
`read_blob_data_from_index`, but it's only modified if
`read_blob_data_from_index` returns non-NULL. The read of `size` when
calling `read_attr_from_buf` unconditionally may read from an
uninitialized value. `read_attr_from_buf` checks that `buf` is non-NULL
before reading from `size`, but by then it's already too late: the
uninitialized read will have happened already. Furthermore, there's no
guarantee that the compiler won't reorder things so that it checks
`size` before checking `!buf`.
Make the call to `read_attr_from_buf` conditional on `buf` being
non-NULL, ensuring that `size` is not read if it's never set.
Signed-off-by: Kyle Lippincott <spectral@google.com>
gitgitgadget bot
pushed a commit
that referenced
this pull request
Jun 17, 2024
Memory sanitizer (msan) is detecting a use of an uninitialized variable
(`size`) in `read_attr_from_index`:
==2268==WARNING: MemorySanitizer: use-of-uninitialized-value
#0 0x5651f3416504 in read_attr_from_index git/attr.c:868:11
#1 0x5651f3415530 in read_attr git/attr.c
#2 0x5651f3413d74 in bootstrap_attr_stack git/attr.c:968:6
#3 0x5651f3413d74 in prepare_attr_stack git/attr.c:1004:2
#4 0x5651f3413d74 in collect_some_attrs git/attr.c:1199:2
#5 0x5651f3413144 in git_check_attr git/attr.c:1345:2
#6 0x5651f34728da in convert_attrs git/convert.c:1320:2
#7 0x5651f3473425 in would_convert_to_git_filter_fd git/convert.c:1373:2
#8 0x5651f357a35e in index_fd git/object-file.c:2630:34
#9 0x5651f357aa15 in index_path git/object-file.c:2657:7
#10 0x5651f35db9d9 in add_to_index git/read-cache.c:766:7
#11 0x5651f35dc170 in add_file_to_index git/read-cache.c:799:9
#12 0x5651f321f9b2 in add_files git/builtin/add.c:346:7
#13 0x5651f321f9b2 in cmd_add git/builtin/add.c:565:18
#14 0x5651f321d327 in run_builtin git/git.c:474:11
#15 0x5651f321bc9e in handle_builtin git/git.c:729:3
#16 0x5651f321a792 in run_argv git/git.c:793:4
#17 0x5651f321a792 in cmd_main git/git.c:928:19
#18 0x5651f33dde1f in main git/common-main.c:62:11
The issue exists because `size` is an output parameter from
`read_blob_data_from_index`, but it's only modified if
`read_blob_data_from_index` returns non-NULL. The read of `size` when
calling `read_attr_from_buf` unconditionally may read from an
uninitialized value. `read_attr_from_buf` checks that `buf` is non-NULL
before reading from `size`, but by then it's already too late: the
uninitialized read will have happened already. Furthermore, there's no
guarantee that the compiler won't reorder things so that it checks
`size` before checking `!buf`.
Make the call to `read_attr_from_buf` conditional on `buf` being
non-NULL, ensuring that `size` is not read if it's never set.
Signed-off-by: Kyle Lippincott <spectral@google.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
gitgitgadget bot
pushed a commit
that referenced
this pull request
Aug 19, 2024
It was recently reported that concurrent reads and writes may cause the
reftable backend to segfault. The root cause of this is that we do not
properly keep track of reftable readers across reloads.
Suppose that you have a reftable iterator and then decide to reload the
stack while iterating through the iterator. When the stack has been
rewritten since we have created the iterator, then we would end up
discarding a subset of readers that may still be in use by the iterator.
The consequence is that we now try to reference deallocated memory,
which of course segfaults.
One way to trigger this is in t5616, where some background maintenance
jobs have been leaking from one test into another. This leads to stack
traces like the following one:
+ git -c protocol.version=0 -C pc1 fetch --filter=blob:limit=29999 --refetch origin
AddressSanitizer:DEADLYSIGNAL
=================================================================
==657994==ERROR: AddressSanitizer: SEGV on unknown address 0x7fa0f0ec6089 (pc 0x55f23e52ddf9 bp
0x7ffe7bfa1700 sp 0x7ffe7bfa1700 T0)
==657994==The signal is caused by a READ memory access.
#0 0x55f23e52ddf9 in get_var_int reftable/record.c:29
#1 0x55f23e53295e in reftable_decode_keylen reftable/record.c:170
#2 0x55f23e532cc0 in reftable_decode_key reftable/record.c:194
#3 0x55f23e54e72e in block_iter_next reftable/block.c:398
#4 0x55f23e5573dc in table_iter_next_in_block reftable/reader.c:240
#5 0x55f23e5573dc in table_iter_next reftable/reader.c:355
#6 0x55f23e5573dc in table_iter_next reftable/reader.c:339
#7 0x55f23e551283 in merged_iter_advance_subiter reftable/merged.c:69
#8 0x55f23e55169e in merged_iter_next_entry reftable/merged.c:123
#9 0x55f23e55169e in merged_iter_next_void reftable/merged.c:172
#10 0x55f23e537625 in reftable_iterator_next_ref reftable/generic.c:175
#11 0x55f23e2cf9c6 in reftable_ref_iterator_advance refs/reftable-backend.c:464
#12 0x55f23e2d996e in ref_iterator_advance refs/iterator.c:13
#13 0x55f23e2d996e in do_for_each_ref_iterator refs/iterator.c:452
#14 0x55f23dca6767 in get_ref_map builtin/fetch.c:623
#15 0x55f23dca6767 in do_fetch builtin/fetch.c:1659
#16 0x55f23dca6767 in fetch_one builtin/fetch.c:2133
#17 0x55f23dca6767 in cmd_fetch builtin/fetch.c:2432
#18 0x55f23dba7764 in run_builtin git.c:484
#19 0x55f23dba7764 in handle_builtin git.c:741
#20 0x55f23dbab61e in run_argv git.c:805
#21 0x55f23dbab61e in cmd_main git.c:1000
#22 0x55f23dba4781 in main common-main.c:64
#23 0x7fa0f063fc89 in __libc_start_call_main ../sysdeps/nptl/libc_start_call_main.h:58
#24 0x7fa0f063fd44 in __libc_start_main_impl ../csu/libc-start.c:360
#25 0x55f23dba6ad0 in _start (git+0xadfad0) (BuildId: 803b2b7f59beb03d7849fb8294a8e2145dd4aa27)
While it is somewhat awkward that the maintenance processes survive
tests in the first place, it is totally expected that reftables should
work alright with concurrent writers. Seemingly they don't.
The only underlying resource that we need to care about in this context
is the reftable reader, which is responsible for reading a single table
from disk. These readers get discarded immediately (unless reused) when
calling `reftable_stack_reload()`, which is wrong. We can only close
them once we know that there are no iterators using them anymore.
Prepare for a fix by converting the reftable readers to be refcounted.
Reported-by: Jeff King <peff@peff.net>
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
gitgitgadget bot
pushed a commit
that referenced
this pull request
Aug 22, 2024
It was recently reported that concurrent reads and writes may cause the
reftable backend to segfault. The root cause of this is that we do not
properly keep track of reftable readers across reloads.
Suppose that you have a reftable iterator and then decide to reload the
stack while iterating through the iterator. When the stack has been
rewritten since we have created the iterator, then we would end up
discarding a subset of readers that may still be in use by the iterator.
The consequence is that we now try to reference deallocated memory,
which of course segfaults.
One way to trigger this is in t5616, where some background maintenance
jobs have been leaking from one test into another. This leads to stack
traces like the following one:
+ git -c protocol.version=0 -C pc1 fetch --filter=blob:limit=29999 --refetch origin
AddressSanitizer:DEADLYSIGNAL
=================================================================
==657994==ERROR: AddressSanitizer: SEGV on unknown address 0x7fa0f0ec6089 (pc 0x55f23e52ddf9 bp
0x7ffe7bfa1700 sp 0x7ffe7bfa1700 T0)
==657994==The signal is caused by a READ memory access.
#0 0x55f23e52ddf9 in get_var_int reftable/record.c:29
#1 0x55f23e53295e in reftable_decode_keylen reftable/record.c:170
#2 0x55f23e532cc0 in reftable_decode_key reftable/record.c:194
#3 0x55f23e54e72e in block_iter_next reftable/block.c:398
#4 0x55f23e5573dc in table_iter_next_in_block reftable/reader.c:240
#5 0x55f23e5573dc in table_iter_next reftable/reader.c:355
#6 0x55f23e5573dc in table_iter_next reftable/reader.c:339
#7 0x55f23e551283 in merged_iter_advance_subiter reftable/merged.c:69
#8 0x55f23e55169e in merged_iter_next_entry reftable/merged.c:123
#9 0x55f23e55169e in merged_iter_next_void reftable/merged.c:172
#10 0x55f23e537625 in reftable_iterator_next_ref reftable/generic.c:175
#11 0x55f23e2cf9c6 in reftable_ref_iterator_advance refs/reftable-backend.c:464
#12 0x55f23e2d996e in ref_iterator_advance refs/iterator.c:13
#13 0x55f23e2d996e in do_for_each_ref_iterator refs/iterator.c:452
#14 0x55f23dca6767 in get_ref_map builtin/fetch.c:623
#15 0x55f23dca6767 in do_fetch builtin/fetch.c:1659
#16 0x55f23dca6767 in fetch_one builtin/fetch.c:2133
#17 0x55f23dca6767 in cmd_fetch builtin/fetch.c:2432
#18 0x55f23dba7764 in run_builtin git.c:484
#19 0x55f23dba7764 in handle_builtin git.c:741
#20 0x55f23dbab61e in run_argv git.c:805
#21 0x55f23dbab61e in cmd_main git.c:1000
#22 0x55f23dba4781 in main common-main.c:64
#23 0x7fa0f063fc89 in __libc_start_call_main ../sysdeps/nptl/libc_start_call_main.h:58
#24 0x7fa0f063fd44 in __libc_start_main_impl ../csu/libc-start.c:360
#25 0x55f23dba6ad0 in _start (git+0xadfad0) (BuildId: 803b2b7f59beb03d7849fb8294a8e2145dd4aa27)
While it is somewhat awkward that the maintenance processes survive
tests in the first place, it is totally expected that reftables should
work alright with concurrent writers. Seemingly they don't.
The only underlying resource that we need to care about in this context
is the reftable reader, which is responsible for reading a single table
from disk. These readers get discarded immediately (unless reused) when
calling `reftable_stack_reload()`, which is wrong. We can only close
them once we know that there are no iterators using them anymore.
Prepare for a fix by converting the reftable readers to be refcounted.
Reported-by: Jeff King <peff@peff.net>
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
gitgitgadget bot
pushed a commit
that referenced
this pull request
Aug 23, 2024
It was recently reported that concurrent reads and writes may cause the
reftable backend to segfault. The root cause of this is that we do not
properly keep track of reftable readers across reloads.
Suppose that you have a reftable iterator and then decide to reload the
stack while iterating through the iterator. When the stack has been
rewritten since we have created the iterator, then we would end up
discarding a subset of readers that may still be in use by the iterator.
The consequence is that we now try to reference deallocated memory,
which of course segfaults.
One way to trigger this is in t5616, where some background maintenance
jobs have been leaking from one test into another. This leads to stack
traces like the following one:
+ git -c protocol.version=0 -C pc1 fetch --filter=blob:limit=29999 --refetch origin
AddressSanitizer:DEADLYSIGNAL
=================================================================
==657994==ERROR: AddressSanitizer: SEGV on unknown address 0x7fa0f0ec6089 (pc 0x55f23e52ddf9 bp
0x7ffe7bfa1700 sp 0x7ffe7bfa1700 T0)
==657994==The signal is caused by a READ memory access.
#0 0x55f23e52ddf9 in get_var_int reftable/record.c:29
#1 0x55f23e53295e in reftable_decode_keylen reftable/record.c:170
#2 0x55f23e532cc0 in reftable_decode_key reftable/record.c:194
#3 0x55f23e54e72e in block_iter_next reftable/block.c:398
#4 0x55f23e5573dc in table_iter_next_in_block reftable/reader.c:240
#5 0x55f23e5573dc in table_iter_next reftable/reader.c:355
#6 0x55f23e5573dc in table_iter_next reftable/reader.c:339
#7 0x55f23e551283 in merged_iter_advance_subiter reftable/merged.c:69
#8 0x55f23e55169e in merged_iter_next_entry reftable/merged.c:123
#9 0x55f23e55169e in merged_iter_next_void reftable/merged.c:172
#10 0x55f23e537625 in reftable_iterator_next_ref reftable/generic.c:175
#11 0x55f23e2cf9c6 in reftable_ref_iterator_advance refs/reftable-backend.c:464
#12 0x55f23e2d996e in ref_iterator_advance refs/iterator.c:13
#13 0x55f23e2d996e in do_for_each_ref_iterator refs/iterator.c:452
#14 0x55f23dca6767 in get_ref_map builtin/fetch.c:623
#15 0x55f23dca6767 in do_fetch builtin/fetch.c:1659
#16 0x55f23dca6767 in fetch_one builtin/fetch.c:2133
#17 0x55f23dca6767 in cmd_fetch builtin/fetch.c:2432
#18 0x55f23dba7764 in run_builtin git.c:484
#19 0x55f23dba7764 in handle_builtin git.c:741
#20 0x55f23dbab61e in run_argv git.c:805
#21 0x55f23dbab61e in cmd_main git.c:1000
#22 0x55f23dba4781 in main common-main.c:64
#23 0x7fa0f063fc89 in __libc_start_call_main ../sysdeps/nptl/libc_start_call_main.h:58
#24 0x7fa0f063fd44 in __libc_start_main_impl ../csu/libc-start.c:360
#25 0x55f23dba6ad0 in _start (git+0xadfad0) (BuildId: 803b2b7f59beb03d7849fb8294a8e2145dd4aa27)
While it is somewhat awkward that the maintenance processes survive
tests in the first place, it is totally expected that reftables should
work alright with concurrent writers. Seemingly they don't.
The only underlying resource that we need to care about in this context
is the reftable reader, which is responsible for reading a single table
from disk. These readers get discarded immediately (unless reused) when
calling `reftable_stack_reload()`, which is wrong. We can only close
them once we know that there are no iterators using them anymore.
Prepare for a fix by converting the reftable readers to be refcounted.
Reported-by: Jeff King <peff@peff.net>
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
gitgitgadget bot
pushed a commit
that referenced
this pull request
Oct 5, 2024
The incremental MIDX bitmap work was done prior to 9d4855e (midx-write: fix leaking buffer, 2024-09-30), and causes test failures in t5334 in a post-9d4855eef3 world. The leak looks like: Direct leak of 264 byte(s) in 1 object(s) allocated from: #0 0x7f6bcd87eaca in calloc ../../../../src/libsanitizer/lsan/lsan_interceptors.cpp:90 #1 0x55ad1428e8a4 in xcalloc wrapper.c:151 #2 0x55ad14199e16 in prepare_midx_bitmap_git pack-bitmap.c:742 #3 0x55ad14199447 in open_midx_bitmap_1 pack-bitmap.c:507 #4 0x55ad14199cca in open_midx_bitmap pack-bitmap.c:704 #5 0x55ad14199d44 in open_bitmap pack-bitmap.c:717 #6 0x55ad14199dc2 in prepare_bitmap_git pack-bitmap.c:733 #7 0x55ad1419e496 in test_bitmap_walk pack-bitmap.c:2698 #8 0x55ad14047b0b in cmd_rev_list builtin/rev-list.c:629 #9 0x55ad13f71cd6 in run_builtin git.c:487 #10 0x55ad13f72132 in handle_builtin git.c:756 #11 0x55ad13f72380 in run_argv git.c:826 #12 0x55ad13f728f4 in cmd_main git.c:961 #13 0x55ad1407d3ae in main common-main.c:64 #14 0x7f6bcd5f0c89 in __libc_start_call_main ../sysdeps/nptl/libc_start_call_main.h:58 #15 0x7f6bcd5f0d44 in __libc_start_main_impl ../csu/libc-start.c:360 #16 0x55ad13f6ff90 in _start (git+0x1ef90) (BuildId: 3e63cdd415f1d185b21da3035cb48332510dddce) , and is a result of us not freeing the resources corresponding to the bitmap's base layer, if one was present. Rectify that leak by calling the newly-introduced free_bitmap_index() function on the base layer to ensure that its resources are also freed. Signed-off-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
gitgitgadget bot
pushed a commit
that referenced
this pull request
Oct 18, 2024
This one is a little bit more curious. In t6112, we have a test that
exercises the `git rev-list --filter` option with invalid filters. We
execute git-rev-list(1) via `test_must_fail`, which means that we check
for leaks even though Git exits with an error code. This causes the
following leak:
Direct leak of 27 byte(s) in 1 object(s) allocated from:
#0 0x5555555e6946 in realloc.part.0 lsan_interceptors.cpp.o
#1 0x5555558fb4b6 in xrealloc wrapper.c:137:8
#2 0x5555558b6e06 in strbuf_grow strbuf.c:112:2
#3 0x5555558b7550 in strbuf_add strbuf.c:311:2
#4 0x5555557c1a88 in strbuf_addstr strbuf.h:310:2
#5 0x5555557c1d4c in parse_list_objects_filter list-objects-filter-options.c:261:3
#6 0x555555885ead in handle_revision_pseudo_opt revision.c:2899:3
#7 0x555555884e20 in setup_revisions revision.c:3014:11
#8 0x5555556c4b42 in cmd_rev_list builtin/rev-list.c:588:9
#9 0x5555555ec5e3 in run_builtin git.c:483:11
#10 0x5555555eb1e4 in handle_builtin git.c:749:13
#11 0x5555555ec001 in run_argv git.c:819:4
#12 0x5555555eaf94 in cmd_main git.c:954:19
#13 0x5555556fd569 in main common-main.c:64:11
#14 0x7ffff7ca714d in __libc_start_call_main (.../lib/libc.so.6+0x2a14d)
#15 0x7ffff7ca7208 in __libc_start_main@GLIBC_2.2.5 (.../libc.so.6+0x2a208)
#16 0x5555555ad064 in _start (git+0x59064)
This leak is valid, as we call `die()` and do not clean up the memory at
all. But what's curious is that this is the only leak reported, because
we don't clean up any other allocated memory, either, and I have no idea
why the leak sanitizer treats this buffer specially.
In any case, we can work around the leak by shuffling things around a
bit. Instead of calling `gently_parse_list_objects_filter()` and dying
after we have modified the filter spec, we simply do so beforehand. Like
this we don't allocate the buffer in the error case, which makes the
reported leak go away.
It's not pretty, but it manages to make t6112 leak free.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
gitgitgadget bot
pushed a commit
that referenced
this pull request
Oct 21, 2024
This one is a little bit more curious. In t6112, we have a test that
exercises the `git rev-list --filter` option with invalid filters. We
execute git-rev-list(1) via `test_must_fail`, which means that we check
for leaks even though Git exits with an error code. This causes the
following leak:
Direct leak of 27 byte(s) in 1 object(s) allocated from:
#0 0x5555555e6946 in realloc.part.0 lsan_interceptors.cpp.o
#1 0x5555558fb4b6 in xrealloc wrapper.c:137:8
#2 0x5555558b6e06 in strbuf_grow strbuf.c:112:2
#3 0x5555558b7550 in strbuf_add strbuf.c:311:2
#4 0x5555557c1a88 in strbuf_addstr strbuf.h:310:2
#5 0x5555557c1d4c in parse_list_objects_filter list-objects-filter-options.c:261:3
#6 0x555555885ead in handle_revision_pseudo_opt revision.c:2899:3
#7 0x555555884e20 in setup_revisions revision.c:3014:11
#8 0x5555556c4b42 in cmd_rev_list builtin/rev-list.c:588:9
#9 0x5555555ec5e3 in run_builtin git.c:483:11
#10 0x5555555eb1e4 in handle_builtin git.c:749:13
#11 0x5555555ec001 in run_argv git.c:819:4
#12 0x5555555eaf94 in cmd_main git.c:954:19
#13 0x5555556fd569 in main common-main.c:64:11
#14 0x7ffff7ca714d in __libc_start_call_main (.../lib/libc.so.6+0x2a14d)
#15 0x7ffff7ca7208 in __libc_start_main@GLIBC_2.2.5 (.../libc.so.6+0x2a208)
#16 0x5555555ad064 in _start (git+0x59064)
This leak is valid, as we call `die()` and do not clean up the memory at
all. But what's curious is that this is the only leak reported, because
we don't clean up any other allocated memory, either, and I have no idea
why the leak sanitizer treats this buffer specially.
In any case, we can work around the leak by shuffling things around a
bit. Instead of calling `gently_parse_list_objects_filter()` and dying
after we have modified the filter spec, we simply do so beforehand. Like
this we don't allocate the buffer in the error case, which makes the
reported leak go away.
It's not pretty, but it manages to make t6112 leak free.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
gitgitgadget bot
pushed a commit
that referenced
this pull request
Nov 5, 2024
This one is a little bit more curious. In t6112, we have a test that
exercises the `git rev-list --filter` option with invalid filters. We
execute git-rev-list(1) via `test_must_fail`, which means that we check
for leaks even though Git exits with an error code. This causes the
following leak:
Direct leak of 27 byte(s) in 1 object(s) allocated from:
#0 0x5555555e6946 in realloc.part.0 lsan_interceptors.cpp.o
#1 0x5555558fb4b6 in xrealloc wrapper.c:137:8
#2 0x5555558b6e06 in strbuf_grow strbuf.c:112:2
#3 0x5555558b7550 in strbuf_add strbuf.c:311:2
#4 0x5555557c1a88 in strbuf_addstr strbuf.h:310:2
#5 0x5555557c1d4c in parse_list_objects_filter list-objects-filter-options.c:261:3
#6 0x555555885ead in handle_revision_pseudo_opt revision.c:2899:3
#7 0x555555884e20 in setup_revisions revision.c:3014:11
#8 0x5555556c4b42 in cmd_rev_list builtin/rev-list.c:588:9
#9 0x5555555ec5e3 in run_builtin git.c:483:11
#10 0x5555555eb1e4 in handle_builtin git.c:749:13
#11 0x5555555ec001 in run_argv git.c:819:4
#12 0x5555555eaf94 in cmd_main git.c:954:19
#13 0x5555556fd569 in main common-main.c:64:11
#14 0x7ffff7ca714d in __libc_start_call_main (.../lib/libc.so.6+0x2a14d)
#15 0x7ffff7ca7208 in __libc_start_main@GLIBC_2.2.5 (.../libc.so.6+0x2a208)
#16 0x5555555ad064 in _start (git+0x59064)
This leak is valid, as we call `die()` and do not clean up the memory at
all. But what's curious is that this is the only leak reported, because
we don't clean up any other allocated memory, either, and I have no idea
why the leak sanitizer treats this buffer specially.
In any case, we can work around the leak by shuffling things around a
bit. Instead of calling `gently_parse_list_objects_filter()` and dying
after we have modified the filter spec, we simply do so beforehand. Like
this we don't allocate the buffer in the error case, which makes the
reported leak go away.
It's not pretty, but it manages to make t6112 leak free.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
gitgitgadget bot
pushed a commit
that referenced
this pull request
Dec 30, 2024
In 1b9e9be (csum-file.c: use unsafe SHA-1 implementation when available, 2024-09-26) we have converted our `struct hashfile` to use the unsafe SHA1 backend, which results in a significant speedup. One needs to be careful with how to use that structure now though because callers need to consistently use either the safe or unsafe variants of SHA1, as otherwise one can easily trigger corruption. As it turns out, we have one inconsistent usage in our tree because we directly initialize `struct hashfile_checkpoint::ctx` with the safe variant of SHA1, but end up writing to that context with the unsafe ones. This went unnoticed so far because our CI systems do not exercise different hash functions for these two backends, and consequently safe and unsafe variants are equivalent. But when using SHA1DC as safe and OpenSSL as unsafe backend this leads to a crash an t1050: ++ git -c core.compression=0 add large1 AddressSanitizer:DEADLYSIGNAL ================================================================= ==1367==ERROR: AddressSanitizer: SEGV on unknown address 0x000000000040 (pc 0x7ffff7a01a99 bp 0x507000000db0 sp 0x7fffffff5690 T0) ==1367==The signal is caused by a READ memory access. ==1367==Hint: address points to the zero page. #0 0x7ffff7a01a99 in EVP_MD_CTX_copy_ex (/nix/store/h1ydpxkw9qhjdxjpic1pdc2nirggyy6f-openssl-3.3.2/lib/libcrypto.so.3+0x201a99) (BuildId: 41746a580d39075fc85e8c8065b6c07fb34e97d4) #1 0x555555ddde56 in openssl_SHA1_Clone ../sha1/openssl.h:40:2 #2 0x555555dce2fc in git_hash_sha1_clone_unsafe ../object-file.c:123:2 #3 0x555555c2d5f8 in hashfile_checkpoint ../csum-file.c:211:2 #4 0x555555b9905d in deflate_blob_to_pack ../bulk-checkin.c:286:4 #5 0x555555b98ae9 in index_blob_bulk_checkin ../bulk-checkin.c:362:15 #6 0x555555ddab62 in index_blob_stream ../object-file.c:2756:9 #7 0x555555dda420 in index_fd ../object-file.c:2778:9 #8 0x555555ddad76 in index_path ../object-file.c:2796:7 #9 0x555555e947f3 in add_to_index ../read-cache.c:771:7 #10 0x555555e954a4 in add_file_to_index ../read-cache.c:804:9 #11 0x5555558b5c39 in add_files ../builtin/add.c:355:7 #12 0x5555558b412e in cmd_add ../builtin/add.c:578:18 #13 0x555555b1f493 in run_builtin ../git.c:480:11 #14 0x555555b1bfef in handle_builtin ../git.c:740:9 #15 0x555555b1e6f4 in run_argv ../git.c:807:4 #16 0x555555b1b87a in cmd_main ../git.c:947:19 #17 0x5555561649e6 in main ../common-main.c:64:11 #18 0x7ffff742a1fb in __libc_start_call_main (/nix/store/65h17wjrrlsj2rj540igylrx7fqcd6vq-glibc-2.40-36/lib/libc.so.6+0x2a1fb) (BuildId: bf320110569c8ec2425e9a0c5e4eb7e97f1fb6e4) #19 0x7ffff742a2b8 in __libc_start_main@GLIBC_2.2.5 (/nix/store/65h17wjrrlsj2rj540igylrx7fqcd6vq-glibc-2.40-36/lib/libc.so.6+0x2a2b8) (BuildId: bf320110569c8ec2425e9a0c5e4eb7e97f1fb6e4) #20 0x555555772c84 in _start (git+0x21ec84) ==1367==Register values: rax = 0x0000511000001080 rbx = 0x0000000000000000 rcx = 0x000000000000000c rdx = 0x0000000000000000 rdi = 0x0000000000000000 rsi = 0x0000507000000db0 rbp = 0x0000507000000db0 rsp = 0x00007fffffff5690 r8 = 0x0000000000000000 r9 = 0x0000000000000000 r10 = 0x0000000000000000 r11 = 0x00007ffff7a01a30 r12 = 0x0000000000000000 r13 = 0x00007fffffff6b38 r14 = 0x00007ffff7ffd000 r15 = 0x00005555563b9910 AddressSanitizer can not provide additional info. SUMMARY: AddressSanitizer: SEGV (/nix/store/h1ydpxkw9qhjdxjpic1pdc2nirggyy6f-openssl-3.3.2/lib/libcrypto.so.3+0x201a99) (BuildId: 41746a580d39075fc85e8c8065b6c07fb34e97d4) in EVP_MD_CTX_copy_ex ==1367==ABORTING ./test-lib.sh: line 1023: 1367 Aborted git $config add large1 error: last command exited with $?=134 not ok 4 - add with -c core.compression=0 Fix the issue by using the unsafe variant instead. Signed-off-by: Patrick Steinhardt <ps@pks.im> Signed-off-by: Junio C Hamano <gitster@pobox.com>
gitgitgadget bot
pushed a commit
that referenced
this pull request
Dec 30, 2024
Same as with the preceding commit, git-fast-import(1) is using the safe
variant to initialize a hashfile checkpoint. This leads to a segfault
when passing the checkpoint into the hashfile subsystem because it would
use the unsafe variants instead:
++ git --git-dir=R/.git fast-import --big-file-threshold=1
AddressSanitizer:DEADLYSIGNAL
=================================================================
==577126==ERROR: AddressSanitizer: SEGV on unknown address 0x000000000040 (pc 0x7ffff7a01a99 bp 0x5070000009c0 sp 0x7fffffff5b30 T0)
==577126==The signal is caused by a READ memory access.
==577126==Hint: address points to the zero page.
#0 0x7ffff7a01a99 in EVP_MD_CTX_copy_ex (/nix/store/h1ydpxkw9qhjdxjpic1pdc2nirggyy6f-openssl-3.3.2/lib/libcrypto.so.3+0x201a99) (BuildId: 41746a580d39075fc85e8c8065b6c07fb34e97d4)
#1 0x555555ddde56 in openssl_SHA1_Clone ../sha1/openssl.h:40:2
#2 0x555555dce2fc in git_hash_sha1_clone_unsafe ../object-file.c:123:2
#3 0x555555c2d5f8 in hashfile_checkpoint ../csum-file.c:211:2
#4 0x5555559647d1 in stream_blob ../builtin/fast-import.c:1110:2
#5 0x55555596247b in parse_and_store_blob ../builtin/fast-import.c:2031:3
#6 0x555555967f91 in file_change_m ../builtin/fast-import.c:2408:5
#7 0x55555595d8a2 in parse_new_commit ../builtin/fast-import.c:2768:4
#8 0x55555595bb7a in cmd_fast_import ../builtin/fast-import.c:3614:4
#9 0x555555b1f493 in run_builtin ../git.c:480:11
#10 0x555555b1bfef in handle_builtin ../git.c:740:9
#11 0x555555b1e6f4 in run_argv ../git.c:807:4
#12 0x555555b1b87a in cmd_main ../git.c:947:19
#13 0x5555561649e6 in main ../common-main.c:64:11
#14 0x7ffff742a1fb in __libc_start_call_main (/nix/store/65h17wjrrlsj2rj540igylrx7fqcd6vq-glibc-2.40-36/lib/libc.so.6+0x2a1fb) (BuildId: bf320110569c8ec2425e9a0c5e4eb7e97f1fb6e4)
#15 0x7ffff742a2b8 in __libc_start_main@GLIBC_2.2.5 (/nix/store/65h17wjrrlsj2rj540igylrx7fqcd6vq-glibc-2.40-36/lib/libc.so.6+0x2a2b8) (BuildId: bf320110569c8ec2425e9a0c5e4eb7e97f1fb6e4)
#16 0x555555772c84 in _start (git+0x21ec84)
==577126==Register values:
rax = 0x0000511000000cc0 rbx = 0x0000000000000000 rcx = 0x000000000000000c rdx = 0x0000000000000000
rdi = 0x0000000000000000 rsi = 0x00005070000009c0 rbp = 0x00005070000009c0 rsp = 0x00007fffffff5b30
r8 = 0x0000000000000000 r9 = 0x0000000000000000 r10 = 0x0000000000000000 r11 = 0x00007ffff7a01a30
r12 = 0x0000000000000000 r13 = 0x00007fffffff6b60 r14 = 0x00007ffff7ffd000 r15 = 0x00005555563b9910
AddressSanitizer can not provide additional info.
SUMMARY: AddressSanitizer: SEGV (/nix/store/h1ydpxkw9qhjdxjpic1pdc2nirggyy6f-openssl-3.3.2/lib/libcrypto.so.3+0x201a99) (BuildId: 41746a580d39075fc85e8c8065b6c07fb34e97d4) in EVP_MD_CTX_copy_ex
==577126==ABORTING
./test-lib.sh: line 1039: 577126 Aborted git --git-dir=R/.git fast-import --big-file-threshold=1 < input
error: last command exited with $?=134
not ok 167 - R: blob bigger than threshold
The segfault is only exposed in case the unsafe and safe backends are
different from one another.
Fix the issue by initializing the context with the unsafe SHA1 variant.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
gitgitgadget bot
pushed a commit
that referenced
this pull request
Jan 29, 2025
When trying to create a Unix socket in a path that exceeds the maximum
socket name length we try to first change the directory into the parent
folder before creating the socket to reduce the length of the name. When
this fails we error out of `unix_sockaddr_init()` with an error code,
which indicates to the caller that the context has not been initialized.
Consequently, they don't release that context.
This leads to a memory leak: when we have already populated the context
with the original directory that we need to chdir(3p) back into, but
then the chdir(3p) into the socket's parent directory fails, then we
won't release the original directory's path. The leak is exposed by
t0301, but only via Meson with `meson setup -Dsanitize=leak`:
Direct leak of 129 byte(s) in 1 object(s) allocated from:
#0 0x5555555e85c6 in realloc.part.0 lsan_interceptors.cpp.o
#1 0x55555590e3d6 in xrealloc ../wrapper.c:140:8
#2 0x5555558c8fc6 in strbuf_grow ../strbuf.c:114:2
#3 0x5555558cacab in strbuf_getcwd ../strbuf.c:605:3
#4 0x555555923ff6 in unix_sockaddr_init ../unix-socket.c:65:7
#5 0x555555923e42 in unix_stream_connect ../unix-socket.c:84:6
#6 0x55555562a984 in send_request ../builtin/credential-cache.c:46:11
#7 0x55555562a89e in do_cache ../builtin/credential-cache.c:108:6
#8 0x55555562a655 in cmd_credential_cache ../builtin/credential-cache.c:178:3
#9 0x555555700547 in run_builtin ../git.c:480:11
#10 0x5555556ff0e0 in handle_builtin ../git.c:740:9
#11 0x5555556ffee8 in run_argv ../git.c:807:4
#12 0x5555556fee6b in cmd_main ../git.c:947:19
#13 0x55555593f689 in main ../common-main.c:64:11
#14 0x7ffff7a2a1fb in __libc_start_call_main (/nix/store/h7zcxabfxa7v5xdna45y2hplj31ncf8a-glibc-2.40-36/lib/libc.so.6+0x2a1fb) (BuildId: 0a855678aa0cb573cecbb2bcc73ab8239ec472d0)
#15 0x7ffff7a2a2b8 in __libc_start_main@GLIBC_2.2.5 (/nix/store/h7zcxabfxa7v5xdna45y2hplj31ncf8a-glibc-2.40-36/lib/libc.so.6+0x2a2b8) (BuildId: 0a855678aa0cb573cecbb2bcc73ab8239ec472d0)
#16 0x5555555ad1d4 in _start (git+0x591d4)
DEDUP_TOKEN: ___interceptor_realloc.part.0--xrealloc--strbuf_grow--strbuf_getcwd--unix_sockaddr_init--unix_stream_connect--send_request--do_cache--cmd_credential_cache--run_builtin--handle_builtin--run_argv--cmd_main--main--__libc_start_call_main--__libc_start_main@GLIBC_2.2.5--_start
SUMMARY: LeakSanitizer: 129 byte(s) leaked in 1 allocation(s).
Fix this leak.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
gitgitgadget bot
pushed a commit
that referenced
this pull request
Jan 29, 2025
We don't free the result of `remote_default_branch()`, leading to a
memory leak. This leak is exposed by t9211, but only when run with Meson
via `meson setup -Dsanitize=leak`:
Direct leak of 5 byte(s) in 1 object(s) allocated from:
#0 0x5555555cfb93 in malloc (scalar+0x7bb93)
#1 0x5555556b05c2 in do_xmalloc ../wrapper.c:55:8
#2 0x5555556b06c4 in do_xmallocz ../wrapper.c:89:8
#3 0x5555556b0656 in xmallocz ../wrapper.c:97:9
#4 0x5555556b0728 in xmemdupz ../wrapper.c:113:16
#5 0x5555556b07a7 in xstrndup ../wrapper.c:119:9
#6 0x5555555d3a4b in remote_default_branch ../scalar.c:338:14
#7 0x5555555d20e6 in cmd_clone ../scalar.c:493:28
#8 0x5555555d196b in cmd_main ../scalar.c:992:14
#9 0x5555557c4059 in main ../common-main.c:64:11
#10 0x7ffff7a2a1fb in __libc_start_call_main (/nix/store/h7zcxabfxa7v5xdna45y2hplj31ncf8a-glibc-2.40-36/lib/libc.so.6+0x2a1fb) (BuildId: 0a855678aa0cb573cecbb2bcc73ab8239ec472d0)
#11 0x7ffff7a2a2b8 in __libc_start_main@GLIBC_2.2.5 (/nix/store/h7zcxabfxa7v5xdna45y2hplj31ncf8a-glibc-2.40-36/lib/libc.so.6+0x2a2b8) (BuildId: 0a855678aa0cb573cecbb2bcc73ab8239ec472d0)
#12 0x555555592054 in _start (scalar+0x3e054)
DEDUP_TOKEN: __interceptor_malloc--do_xmalloc--do_xmallocz--xmallocz--xmemdupz--xstrndup--remote_default_branch--cmd_clone--cmd_main--main--__libc_start_call_main--__libc_start_main@GLIBC_2.2.5--_start
SUMMARY: LeakSanitizer: 5 byte(s) leaked in 1 allocation(s).
As the `branch` variable may contain a string constant obtained from
parsing command line arguments we cannot free the leaking variable
directly. Instead, introduce a new `branch_to_free` variable that only
ever gets assigned the allocated string and free that one to plug the
leak.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
gitgitgadget bot
pushed a commit
that referenced
this pull request
Jan 30, 2025
When trying to create a Unix socket in a path that exceeds the maximum
socket name length we try to first change the directory into the parent
folder before creating the socket to reduce the length of the name. When
this fails we error out of `unix_sockaddr_init()` with an error code,
which indicates to the caller that the context has not been initialized.
Consequently, they don't release that context.
This leads to a memory leak: when we have already populated the context
with the original directory that we need to chdir(3p) back into, but
then the chdir(3p) into the socket's parent directory fails, then we
won't release the original directory's path. The leak is exposed by
t0301, but only when running tests in a directory hierarchy whose path
is long enough to make the socket name length exceed the maximum socket
name length:
Direct leak of 129 byte(s) in 1 object(s) allocated from:
#0 0x5555555e85c6 in realloc.part.0 lsan_interceptors.cpp.o
#1 0x55555590e3d6 in xrealloc ../wrapper.c:140:8
#2 0x5555558c8fc6 in strbuf_grow ../strbuf.c:114:2
#3 0x5555558cacab in strbuf_getcwd ../strbuf.c:605:3
#4 0x555555923ff6 in unix_sockaddr_init ../unix-socket.c:65:7
#5 0x555555923e42 in unix_stream_connect ../unix-socket.c:84:6
#6 0x55555562a984 in send_request ../builtin/credential-cache.c:46:11
#7 0x55555562a89e in do_cache ../builtin/credential-cache.c:108:6
#8 0x55555562a655 in cmd_credential_cache ../builtin/credential-cache.c:178:3
#9 0x555555700547 in run_builtin ../git.c:480:11
#10 0x5555556ff0e0 in handle_builtin ../git.c:740:9
#11 0x5555556ffee8 in run_argv ../git.c:807:4
#12 0x5555556fee6b in cmd_main ../git.c:947:19
#13 0x55555593f689 in main ../common-main.c:64:11
#14 0x7ffff7a2a1fb in __libc_start_call_main (/nix/store/h7zcxabfxa7v5xdna45y2hplj31ncf8a-glibc-2.40-36/lib/libc.so.6+0x2a1fb) (BuildId: 0a855678aa0cb573cecbb2bcc73ab8239ec472d0)
#15 0x7ffff7a2a2b8 in __libc_start_main@GLIBC_2.2.5 (/nix/store/h7zcxabfxa7v5xdna45y2hplj31ncf8a-glibc-2.40-36/lib/libc.so.6+0x2a2b8) (BuildId: 0a855678aa0cb573cecbb2bcc73ab8239ec472d0)
#16 0x5555555ad1d4 in _start (git+0x591d4)
DEDUP_TOKEN: ___interceptor_realloc.part.0--xrealloc--strbuf_grow--strbuf_getcwd--unix_sockaddr_init--unix_stream_connect--send_request--do_cache--cmd_credential_cache--run_builtin--handle_builtin--run_argv--cmd_main--main--__libc_start_call_main--__libc_start_main@GLIBC_2.2.5--_start
SUMMARY: LeakSanitizer: 129 byte(s) leaked in 1 allocation(s).
Fix this leak.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
gitgitgadget bot
pushed a commit
that referenced
this pull request
Jan 30, 2025
We don't free the result of `remote_default_branch()`, leading to a
memory leak. This leak is exposed by t9211, but only when run with Meson
with the `-Db_sanitize=leak` option:
Direct leak of 5 byte(s) in 1 object(s) allocated from:
#0 0x5555555cfb93 in malloc (scalar+0x7bb93)
#1 0x5555556b05c2 in do_xmalloc ../wrapper.c:55:8
#2 0x5555556b06c4 in do_xmallocz ../wrapper.c:89:8
#3 0x5555556b0656 in xmallocz ../wrapper.c:97:9
#4 0x5555556b0728 in xmemdupz ../wrapper.c:113:16
#5 0x5555556b07a7 in xstrndup ../wrapper.c:119:9
#6 0x5555555d3a4b in remote_default_branch ../scalar.c:338:14
#7 0x5555555d20e6 in cmd_clone ../scalar.c:493:28
#8 0x5555555d196b in cmd_main ../scalar.c:992:14
#9 0x5555557c4059 in main ../common-main.c:64:11
#10 0x7ffff7a2a1fb in __libc_start_call_main (/nix/store/h7zcxabfxa7v5xdna45y2hplj31ncf8a-glibc-2.40-36/lib/libc.so.6+0x2a1fb) (BuildId: 0a855678aa0cb573cecbb2bcc73ab8239ec472d0)
#11 0x7ffff7a2a2b8 in __libc_start_main@GLIBC_2.2.5 (/nix/store/h7zcxabfxa7v5xdna45y2hplj31ncf8a-glibc-2.40-36/lib/libc.so.6+0x2a2b8) (BuildId: 0a855678aa0cb573cecbb2bcc73ab8239ec472d0)
#12 0x555555592054 in _start (scalar+0x3e054)
DEDUP_TOKEN: __interceptor_malloc--do_xmalloc--do_xmallocz--xmallocz--xmemdupz--xstrndup--remote_default_branch--cmd_clone--cmd_main--main--__libc_start_call_main--__libc_start_main@GLIBC_2.2.5--_start
SUMMARY: LeakSanitizer: 5 byte(s) leaked in 1 allocation(s).
As the `branch` variable may contain a string constant obtained from
parsing command line arguments we cannot free the leaking variable
directly. Instead, introduce a new `branch_to_free` variable that only
ever gets assigned the allocated string and free that one to plug the
leak.
It is unclear why the leak isn't flagged when running the test via our
Makefile.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
gitgitgadget bot
pushed a commit
that referenced
this pull request
Apr 9, 2025
Commit 92f63d2 ("Cygwin 1.7 needs compat/regex", 2013-07-19) set the NO_REGEX build variable because the platform regex library failed some of the tests (t4018 and t4034), which passed just fine with the compat library. After some time (maybe a year or two), the platform library had been updated (with an import from FreeBSD, I believe) and now passed the full test-suite. This would be about the time of the v1.7 -> v2.0 transition in 2015. I had a patch ready to send, but just didn't get around to submitting it to the list. At some point in the interim, the official cygwin git package used the autoconf build system, which sets the NO_REGEX variable to use the platform regex library functions. The new meson build system does likewise. The cygwin platform regex library, in addition to now passing the tests which formerly failed, now passes an 'test_expect_failure' test in the t7815-grep-binary test file. In particular, test #12 'git grep .fi a' which determines that the regex pattern '.' matches a NUL character. The commit f96e567 ("grep: use REG_STARTEND for all matching if available", 2010-05-22) added the test in question, but it does not give any indication as to why the test was framed as an expected fail, rather than a 'positive' test that the 'git grep' command fails to match a NUL. Note that the previous test #11 was also originally marked in that commit as a 'test_expect_failure', but was flipped to an 'success' test in commit 7e36de5 ("t/t7008-grep-binary.sh: un-TODO a test that needs REG_STARTEND", 2010-08-17). In order to produce the same NO_REGEX configuration from autoconf, meson and make, modify config.mak.uname to only set NO_REGEX for cygwin v1.7. In addition, skip test t7815.12 on cygwin, by adding the !CYGWIN pre- requisite to the test header, which (among other things) removes an '...; please update test(s)' comment. Signed-off-by: Ramsay Jones <ramsay@ramsayjones.plus.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
gitgitgadget bot
pushed a commit
that referenced
this pull request
Apr 17, 2025
Commit 92f63d2 ("Cygwin 1.7 needs compat/regex", 2013-07-19) set the NO_REGEX build variable because the platform regex library failed some of the tests (t4018 and t4034), which passed just fine with the compat library. After some time (maybe a year or two), the platform library had been updated (with an import from FreeBSD, I believe) and now passed the full test-suite. This would be about the time of the v1.7 -> v2.0 transition in 2015. I had a patch ready to send, but just didn't get around to submitting it to the list. At some point in the interim, the official cygwin git package used the autoconf build system, which sets the NO_REGEX variable to use the platform regex library functions. The new meson build system does likewise. The cygwin platform regex library, in addition to now passing the tests which formerly failed, now passes an 'test_expect_failure' test in the t7815-grep-binary test file. In particular, test #12 'git grep .fi a' which determines that the regex pattern '.' matches a NUL character. The commit f96e567 ("grep: use REG_STARTEND for all matching if available", 2010-05-22) added the test in question, but it does not give any indication as to why the test was framed as an expected fail, rather than a 'positive' test that the 'git grep' command fails to match a NUL. Note that the previous test #11 was also originally marked in that commit as a 'test_expect_failure', but was flipped to an 'success' test in commit 7e36de5 ("t/t7008-grep-binary.sh: un-TODO a test that needs REG_STARTEND", 2010-08-17). In order to produce the same NO_REGEX configuration from autoconf, meson and make, modify config.mak.uname to only set NO_REGEX for cygwin v1.7. In addition, skip test t7815.12 on cygwin, by adding the !CYGWIN pre- requisite to the test header, which (among other things) removes an '...; please update test(s)' comment. Signed-off-by: Ramsay Jones <ramsay@ramsayjones.plus.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
gitgitgadget bot
pushed a commit
that referenced
this pull request
Jul 22, 2025
find_cfg_ent() allocates a struct reflog_expire_entry_option via
FLEX_ALLOC_MEM and inserts it into a linked list in the
reflog_expire_options structure. The entries in this list are never
freed, resulting in a leak in cmd_reflog_expire and the gc reflog expire
maintenance task:
Direct leak of 39 byte(s) in 1 object(s) allocated from:
#0 0x7ff975ee6883 in calloc (/lib64/libasan.so.8+0xe6883)
#1 0x0000010edada in xcalloc ../wrapper.c:154
#2 0x000000df0898 in find_cfg_ent ../reflog.c:28
#3 0x000000df0898 in reflog_expire_config ../reflog.c:70
#4 0x00000095c451 in configset_iter ../config.c:2116
#5 0x0000006d29e7 in git_config ../config.h:724
#6 0x0000006d29e7 in cmd_reflog_expire ../builtin/reflog.c:205
#7 0x0000006d504c in cmd_reflog ../builtin/reflog.c:419
#8 0x0000007e4054 in run_builtin ../git.c:480
#9 0x0000007e4054 in handle_builtin ../git.c:746
#10 0x0000007e8a35 in run_argv ../git.c:813
#11 0x0000007e8a35 in cmd_main ../git.c:953
#12 0x000000441e8f in main ../common-main.c:9
#13 0x7ff9754115f4 in __libc_start_call_main (/lib64/libc.so.6+0x35f4)
#14 0x7ff9754116a7 in __libc_start_main@@GLIBC_2.34 (/lib64/libc.so.6+0x36a7)
#15 0x000000444184 in _start (/home/jekeller/libexec/git-core/git+0x444184)
Close this leak by adding a reflog_clear_expire_config() function which
iterates the linked list and frees its elements. Call it upon exit of
cmd_reflog_expire() and reflog_expire_condition().
Signed-off-by: Jacob Keller <jacob.keller@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
gitgitgadget bot
pushed a commit
that referenced
this pull request
Jul 23, 2025
find_cfg_ent() allocates a struct reflog_expire_entry_option via
FLEX_ALLOC_MEM and inserts it into a linked list in the
reflog_expire_options structure. The entries in this list are never
freed, resulting in a leak in cmd_reflog_expire and the gc reflog expire
maintenance task:
Direct leak of 39 byte(s) in 1 object(s) allocated from:
#0 0x7ff975ee6883 in calloc (/lib64/libasan.so.8+0xe6883)
#1 0x0000010edada in xcalloc ../wrapper.c:154
#2 0x000000df0898 in find_cfg_ent ../reflog.c:28
#3 0x000000df0898 in reflog_expire_config ../reflog.c:70
#4 0x00000095c451 in configset_iter ../config.c:2116
#5 0x0000006d29e7 in git_config ../config.h:724
#6 0x0000006d29e7 in cmd_reflog_expire ../builtin/reflog.c:205
#7 0x0000006d504c in cmd_reflog ../builtin/reflog.c:419
#8 0x0000007e4054 in run_builtin ../git.c:480
#9 0x0000007e4054 in handle_builtin ../git.c:746
#10 0x0000007e8a35 in run_argv ../git.c:813
#11 0x0000007e8a35 in cmd_main ../git.c:953
#12 0x000000441e8f in main ../common-main.c:9
#13 0x7ff9754115f4 in __libc_start_call_main (/lib64/libc.so.6+0x35f4)
#14 0x7ff9754116a7 in __libc_start_main@@GLIBC_2.34 (/lib64/libc.so.6+0x36a7)
#15 0x000000444184 in _start (/home/jekeller/libexec/git-core/git+0x444184)
Close this leak by adding a reflog_clear_expire_config() function which
iterates the linked list and frees its elements. Call it upon exit of
cmd_reflog_expire() and reflog_expire_condition().
Add a basic test which covers this leak. While at it, cover the
functionality from commit commit 3cb22b8 (Per-ref reflog expiry
configuration, 2008-06-15). We've had this support for years, but lacked
any tests.
Co-developed-by: Jeff King <peff@peff.net>
Signed-off-by: Jacob Keller <jacob.keller@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
gitgitgadget bot
pushed a commit
that referenced
this pull request
Dec 7, 2025
When performing auto-maintenance we check whether commit graphs need to
be generated by counting the number of commits that are reachable by any
reference, but not covered by a commit graph. This search is performed
by iterating through all references and then doing a depth-first search
until we have found enough commits that are not present in the commit
graph.
This logic has a memory leak though:
Direct leak of 16 byte(s) in 1 object(s) allocated from:
#0 0x55555562e433 in malloc (git+0xda433)
#1 0x555555964322 in do_xmalloc ../wrapper.c:55:8
#2 0x5555559642e6 in xmalloc ../wrapper.c:76:9
#3 0x55555579bf29 in commit_list_append ../commit.c:1872:35
#4 0x55555569f160 in dfs_on_ref ../builtin/gc.c:1165:4
#5 0x5555558c33fd in do_for_each_ref_iterator ../refs/iterator.c:431:12
#6 0x5555558af520 in do_for_each_ref ../refs.c:1828:9
#7 0x5555558ac317 in refs_for_each_ref ../refs.c:1833:9
#8 0x55555569e207 in should_write_commit_graph ../builtin/gc.c:1188:11
#9 0x55555569c915 in maintenance_is_needed ../builtin/gc.c:3492:8
#10 0x55555569b76a in cmd_maintenance ../builtin/gc.c:3542:9
#11 0x55555575166a in run_builtin ../git.c:506:11
#12 0x5555557502f0 in handle_builtin ../git.c:779:9
#13 0x555555751127 in run_argv ../git.c:862:4
#14 0x55555575007b in cmd_main ../git.c:984:19
#15 0x5555557523aa in main ../common-main.c:9:11
#16 0x7ffff7a2a4d7 in __libc_start_call_main (/nix/store/xx7cm72qy2c0643cm1ipngd87aqwkcdp-glibc-2.40-66/lib/libc.so.6+0x2a4d7) (BuildId: cddea92d6cba8333be952b5a02fd47d61054c5ab)
#17 0x7ffff7a2a59a in __libc_start_main@GLIBC_2.2.5 (/nix/store/xx7cm72qy2c0643cm1ipngd87aqwkcdp-glibc-2.40-66/lib/libc.so.6+0x2a59a) (BuildId: cddea92d6cba8333be952b5a02fd47d61054c5ab)
#18 0x5555555f0934 in _start (git+0x9c934)
The root cause of this memory leak is our use of `commit_list_append()`.
This function expects as parameters the item to append and the _tail_ of
the list to append. This tail will then be overwritten with the new tail
of the list so that it can be used in subsequent calls. But we call it
with `commit_list_append(parent->item, &stack)`, so we end up losing
everything but the new item.
This issue only surfaces when counting merge commits. Next to being a
memory leak, it also shows that we're in fact miscounting as we only
respect children of the last parent. All previous parents are discarded,
so their children will be disregarded unless they are hit via another
reference.
While crafting a test case for the issue I was puzzled that I couldn't
establish the proper border at which the auto-condition would be
fulfilled. As it turns out, there's another bug: if an object is at the
tip of any reference we don't mark it as seen. Consequently, if it is
reachable via any other reference, we'd count that object twice.
Fix both of these bugs so that we properly count objects without leaking
any memory.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
gitgitgadget bot
pushed a commit
that referenced
this pull request
Dec 7, 2025
In the next commit we are about to move the packfile store into the ODB
source so that we have one store per source. This will lead to a memory
leak in the following commit when reading data from a submodule via
git-grep(1):
Direct leak of 192 byte(s) in 1 object(s) allocated from:
#0 0x55555562e726 in calloc (git+0xda726)
#1 0x555555964734 in xcalloc ../wrapper.c:154:8
#2 0x555555835136 in load_multi_pack_index_one ../midx.c:135:2
#3 0x555555834fd6 in load_multi_pack_index ../midx.c:382:6
#4 0x5555558365b6 in prepare_multi_pack_index_one ../midx.c:716:17
#5 0x55555586c605 in packfile_store_prepare ../packfile.c:1103:3
#6 0x55555586c90c in packfile_store_reprepare ../packfile.c:1118:2
#7 0x5555558546b3 in odb_reprepare ../odb.c:1106:2
#8 0x5555558539e4 in do_oid_object_info_extended ../odb.c:715:4
#9 0x5555558533d1 in odb_read_object_info_extended ../odb.c:862:8
#10 0x5555558540bd in odb_read_object ../odb.c:920:6
#11 0x55555580a330 in grep_source_load_oid ../grep.c:1934:12
#12 0x55555580a13a in grep_source_load ../grep.c:1986:10
#13 0x555555809103 in grep_source_is_binary ../grep.c:2014:7
#14 0x555555807574 in grep_source_1 ../grep.c:1625:8
#15 0x555555807322 in grep_source ../grep.c:1837:10
#16 0x5555556a5c58 in run ../builtin/grep.c:208:10
#17 0x55555562bb42 in void* ThreadStartFunc<false>(void*) lsan_interceptors.cpp.o
#18 0x7ffff7a9a979 in start_thread (/nix/store/xx7cm72qy2c0643cm1ipngd87aqwkcdp-glibc-2.40-66/lib/libc.so.6+0x9a979) (BuildId: cddea92d6cba8333be952b5a02fd47d61054c5ab)
#19 0x7ffff7b22d2b in __GI___clone3 (/nix/store/xx7cm72qy2c0643cm1ipngd87aqwkcdp-glibc-2.40-66/lib/libc.so.6+0x122d2b) (BuildId: cddea92d6cba8333be952b5a02fd47d61054c5ab)
The root caues of this leak is the way we set up and release the
submodule:
1. We use `repo_submodule_init()` to initialize a new repository. This
repository is stored in `repos_to_free`.
2. We now read data from the submodule repository.
3. We then call `repo_clear()` on the submodule repositories.
4. `repo_clear()` calls `odb_free()`.
5. `odb_free()` calls `odb_free_sources()` followed by `odb_close()`.
The issue here is the 5th step: we call `odb_free_sources()` _before_ we
call `odb_close()`. But `odb_free_sources()` already frees all sources,
so the logic that closes them in `odb_close()` now becomes a no-op. As a
consequence, we never explicitly close sources at all.
Fix the leak by closing the store before we free the sources.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
One unresolved issue with the commit-graph feature is that it can cause issues when combined with replace objects, commit grafts, or shallow clones. These are not 100% incompatible, as one could be reasonably successful writing a commit-graph after replacing some objects and not have issues. The problems happen when commits that are already in the commit-graph file are replaced, or when git is run with the
--no-replace-objectsoption; this can cause incorrect parents or incorrect generation numbers. Similar things occur with commit grafts and shallow clones, especially when runninggit fetch --unshallowin a shallow repo.Instead of trying (and probably failing) to make these features work together, default to making the commit-graph feature unavailable in these situations. Create a new method 'commit_graph_compatible(r)' that checks if the repository 'r' has any of these features enabled.
I will send a follow-up patch that shows how I tested these interactions by computing the commit-graph on every 'git commit'.
This approach works for most cases, but I found one nagging test case that was causing problems. This led to the commit "commit-graph: close_commit_graph before shallow walk" and is the patch I am least confident about. Please take a close look at that one and suggest alternatives.
This approach is very different from the previous RFC on the subject [1].
While building this series, I got some test failures in the non-the_repository tests. These issues are related to missing references to an arbitrary repository (instead of the_repository) and some uninitialized values in the tests. Stefan already sent a patch to address this [2], and I've included those commits (along with a small tweak [3]). These are only included for convenience.
Thanks,
-Stolee
[1] https://public-inbox.org/git/20180531174024.124488-1-dstolee@microsoft.com/
[RFC PATCH 0/6] Fix commit-graph/graft/replace/shallow combo
[2] https://public-inbox.org/git/20180717224935.96397-1-sbeller@google.com/T/#t
[PATCH 0/2] RFC ref store to repository migration
[3] https://public-inbox.org/git/20180717224935.96397-1-sbeller@google.com/T/#m966eac85fd58c66523654ddaf0bec72877d3295a
[PATCH] TO-SQUASH: replace the_repository with arbitrary r
Based-On: jt/commit-graph-per-object-store
Cc: jonathantanmy@google.com
Cc: sbeller@google.com
Cc: jnareb@gmail.com