Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

FIX: Multitask prompt tuning with other tuning init #1144

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/peft/peft_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -1153,7 +1153,7 @@ def generate(self, *args, **kwargs):
self.base_model.prepare_inputs_for_generation = self.base_model_prepare_inputs_for_generation
return outputs

def prepare_inputs_for_generation(self, *args, task_ids: torch.Tensor = None, **kwargs):
def prepare_inputs_for_generation(self, *args, task_ids: Optional[torch.Tensor] = None, **kwargs):
peft_config = self.active_peft_config
model_kwargs = self.base_model_prepare_inputs_for_generation(*args, **kwargs)

Expand Down
3 changes: 2 additions & 1 deletion src/peft/tuners/multitask_prompt_tuning/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,9 +66,10 @@ def __init__(self, config: MultitaskPromptTuningConfig, word_embeddings):
"init method"
)

# TODO: There should be an option for safetensors
state_dict: dict = torch.load(
config.prompt_tuning_init_state_dict_path,
map_location=word_embeddings.device,
map_location=word_embeddings.weight.device,
)

if config.prompt_tuning_init in [
Expand Down
68 changes: 65 additions & 3 deletions tests/test_multitask_prompt_tuning.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,13 +17,15 @@
import tempfile
from unittest import TestCase

import pytest
import torch
from parameterized import parameterized
from torch.testing import assert_close

from peft.mapping import get_peft_model
from peft.peft_model import PeftModel
from peft.tuners.multitask_prompt_tuning import MultitaskPromptTuningConfig
from peft.utils.other import prepare_model_for_int8_training
from peft.tuners.multitask_prompt_tuning import MultitaskPromptTuningConfig, MultitaskPromptTuningInit
from peft.utils.other import WEIGHTS_NAME, prepare_model_for_int8_training
from peft.utils.save_and_load import get_peft_model_state_dict
from tests.testing_common import PeftCommonTester

Expand Down Expand Up @@ -73,7 +75,9 @@ def _create_multitask_prompt_tuning_config(cls) -> MultitaskPromptTuningConfig:
task_type="CAUSAL_LM",
num_virtual_tokens=50,
num_tasks=3,
prompt_tuning_init_text="classify the following into either positive or negative, or entailment, neutral or contradiction:",
prompt_tuning_init_text=(
"classify the following into either positive or negative, or entailment, neutral or contradiction:"
),
)

def test_prepare_for_training(self) -> None:
Expand Down Expand Up @@ -240,3 +244,61 @@ def test_bf16_inference(self) -> None:
mpt = get_peft_model(original, self._create_multitask_prompt_tuning_config())
mpt = mpt.to(self.torch_device)
_ = mpt.generate(input_ids=input_ids, task_ids=task_ids)

def test_generate_text_with_random_init(self) -> None:
model = LlamaForCausalLM(self._create_test_llama_config())

config = self._create_multitask_prompt_tuning_config()
config.prompt_tuning_init = MultitaskPromptTuningInit.RANDOM

model = get_peft_model(model, config)
model = model.to(self.torch_device)

input_ids = torch.LongTensor([[1, 1, 1], [2, 1, 2]]).to(self.torch_device)
attention_mask = torch.LongTensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device)
task_ids = torch.LongTensor([0]).to(self.torch_device)

# check if `generate` works
_ = model.generate(input_ids=input_ids, attention_mask=attention_mask, task_ids=task_ids)

with pytest.raises(ValueError):
# check if `generate` raises an error if task_ids are not passed
_ = model.generate(input_ids, attention_mask=attention_mask)

@parameterized.expand(
[
MultitaskPromptTuningInit.AVERAGE_SOURCE_TASKS,
MultitaskPromptTuningInit.EXACT_SOURCE_TASK,
MultitaskPromptTuningInit.ONLY_SOURCE_SHARED,
],
)
def test_generate_text_with_other_init(self, prompt_tuning_init) -> None:
with tempfile.TemporaryDirectory() as tmp_dirname:
model = LlamaForCausalLM(self._create_test_llama_config())
model = get_peft_model(model, self._create_multitask_prompt_tuning_config())
model.save_pretrained(tmp_dirname, safe_serialization=False) # bc torch.load is used

config = MultitaskPromptTuningConfig(
task_type="CAUSAL_LM",
num_virtual_tokens=50,
num_tasks=1,
prompt_tuning_init_text=(
"classify the following into either positive or negative, or entailment, neutral or contradiction:"
),
prompt_tuning_init=prompt_tuning_init,
prompt_tuning_init_state_dict_path=os.path.join(tmp_dirname, WEIGHTS_NAME),
)
model = LlamaForCausalLM(self._create_test_llama_config())
model = get_peft_model(model, config)
model = model.to(self.torch_device)

input_ids = torch.LongTensor([[1, 1, 1], [2, 1, 2]]).to(self.torch_device)
attention_mask = torch.LongTensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device)
task_ids = torch.LongTensor([0]).to(self.torch_device)

# check if `generate` works
_ = model.generate(input_ids=input_ids, attention_mask=attention_mask, task_ids=task_ids)

with pytest.raises(ValueError):
# check if `generate` raises an error if task_ids are not passed
_ = model.generate(input_ids, attention_mask=attention_mask)
Loading