-
Notifications
You must be signed in to change notification settings - Fork 27.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Create model card for pre-trained NLI models. (#7864)
* Create README.md * Update model_cards/ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli/README.md Co-authored-by: Julien Chaumond <chaumond@gmail.com> * Add Meta information for dataset identifier. Co-authored-by: Julien Chaumond <chaumond@gmail.com>
- Loading branch information
Showing
1 changed file
with
82 additions
and
0 deletions.
There are no files selected for viewing
82 changes: 82 additions & 0 deletions
82
model_cards/ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,82 @@ | ||
--- | ||
datasets: | ||
- snli | ||
- anli | ||
- multi_nli | ||
- multi_nli_mismatch | ||
- fever | ||
license: mit | ||
--- | ||
This is a strong pre-trained RoBERTa-Large NLI model. | ||
|
||
The training data is a combination of well-known NLI datasets: [`SNLI`](https://nlp.stanford.edu/projects/snli/), [`MNLI`](https://cims.nyu.edu/~sbowman/multinli/), [`FEVER-NLI`](https://github.com/easonnie/combine-FEVER-NSMN/blob/master/other_resources/nli_fever.md), [`ANLI (R1, R2, R3)`](https://github.com/facebookresearch/anli). | ||
Other pre-trained NLI models including `RoBERTa`, `ALBert`, `BART`, `ELECTRA`, `XLNet` are also available. | ||
|
||
Trained by [Yixin Nie](https://easonnie.github.io), [original source](https://github.com/facebookresearch/anli). | ||
|
||
Try the code snippet below. | ||
``` | ||
from transformers import AutoTokenizer, AutoModelForSequenceClassification | ||
import torch | ||
if __name__ == '__main__': | ||
max_length = 256 | ||
premise = "Two women are embracing while holding to go packages." | ||
hypothesis = "The men are fighting outside a deli." | ||
hg_model_hub_name = "ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli" | ||
# hg_model_hub_name = "ynie/albert-xxlarge-v2-snli_mnli_fever_anli_R1_R2_R3-nli" | ||
# hg_model_hub_name = "ynie/bart-large-snli_mnli_fever_anli_R1_R2_R3-nli" | ||
# hg_model_hub_name = "ynie/electra-large-discriminator-snli_mnli_fever_anli_R1_R2_R3-nli" | ||
# hg_model_hub_name = "ynie/xlnet-large-cased-snli_mnli_fever_anli_R1_R2_R3-nli" | ||
tokenizer = AutoTokenizer.from_pretrained(hg_model_hub_name) | ||
model = AutoModelForSequenceClassification.from_pretrained(hg_model_hub_name) | ||
tokenized_input_seq_pair = tokenizer.encode_plus(premise, hypothesis, | ||
max_length=max_length, | ||
return_token_type_ids=True, truncation=True) | ||
input_ids = torch.Tensor(tokenized_input_seq_pair['input_ids']).long().unsqueeze(0) | ||
# remember bart doesn't have 'token_type_ids', remove the line below if you are using bart. | ||
token_type_ids = torch.Tensor(tokenized_input_seq_pair['token_type_ids']).long().unsqueeze(0) | ||
attention_mask = torch.Tensor(tokenized_input_seq_pair['attention_mask']).long().unsqueeze(0) | ||
outputs = model(input_ids, | ||
attention_mask=attention_mask, | ||
token_type_ids=token_type_ids, | ||
labels=None) | ||
# Note: | ||
# "id2label": { | ||
# "0": "entailment", | ||
# "1": "neutral", | ||
# "2": "contradiction" | ||
# }, | ||
predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist() # batch_size only one | ||
print("Premise:", premise) | ||
print("Hypothesis:", hypothesis) | ||
print("Entailment:", predicted_probability[0]) | ||
print("Neutral:", predicted_probability[1]) | ||
print("Contradiction:", predicted_probability[2]) | ||
``` | ||
|
||
More in [here](https://github.com/facebookresearch/anli/blob/master/src/hg_api/interactive_eval.py). | ||
|
||
Citation: | ||
``` | ||
@inproceedings{nie-etal-2020-adversarial, | ||
title = "Adversarial {NLI}: A New Benchmark for Natural Language Understanding", | ||
author = "Nie, Yixin and | ||
Williams, Adina and | ||
Dinan, Emily and | ||
Bansal, Mohit and | ||
Weston, Jason and | ||
Kiela, Douwe", | ||
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics", | ||
year = "2020", | ||
publisher = "Association for Computational Linguistics", | ||
} | ||
``` |