Skip to content

Commit

Permalink
Fix naming issue with ImageToText pipeline (#18864)
Browse files Browse the repository at this point in the history
Co-authored-by: Olivier Dehaene <olivier@huggingface.co>
  • Loading branch information
OlivierDehaene and OlivierDehaene authored Sep 2, 2022
1 parent 9b3eb81 commit 129d732
Show file tree
Hide file tree
Showing 5 changed files with 18 additions and 19 deletions.
6 changes: 3 additions & 3 deletions docs/source/en/main_classes/pipelines.mdx
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@ There are two categories of pipeline abstractions to be aware about:
- [`FillMaskPipeline`]
- [`ImageClassificationPipeline`]
- [`ImageSegmentationPipeline`]
- [`Image2TextGenerationPipeline`]
- [`ImageToTextPipeline`]
- [`ObjectDetectionPipeline`]
- [`QuestionAnsweringPipeline`]
- [`SummarizationPipeline`]
Expand Down Expand Up @@ -366,9 +366,9 @@ That should enable you to do all the custom code you want.
- __call__
- all

### Image2TextGenerationPipeline
### ImageToTextPipeline

[[autodoc]] Image2TextGenerationPipeline
[[autodoc]] ImageToTextPipeline
- __call__
- all

Expand Down
4 changes: 2 additions & 2 deletions src/transformers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -384,9 +384,9 @@
"CsvPipelineDataFormat",
"FeatureExtractionPipeline",
"FillMaskPipeline",
"Image2TextGenerationPipeline",
"ImageClassificationPipeline",
"ImageSegmentationPipeline",
"ImageToTextPipeline",
"JsonPipelineDataFormat",
"NerPipeline",
"ObjectDetectionPipeline",
Expand Down Expand Up @@ -3192,9 +3192,9 @@
CsvPipelineDataFormat,
FeatureExtractionPipeline,
FillMaskPipeline,
Image2TextGenerationPipeline,
ImageClassificationPipeline,
ImageSegmentationPipeline,
ImageToTextPipeline,
JsonPipelineDataFormat,
NerPipeline,
ObjectDetectionPipeline,
Expand Down
6 changes: 3 additions & 3 deletions src/transformers/pipelines/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,9 +53,9 @@
from .conversational import Conversation, ConversationalPipeline
from .feature_extraction import FeatureExtractionPipeline
from .fill_mask import FillMaskPipeline
from .image2text_generation import Image2TextGenerationPipeline
from .image_classification import ImageClassificationPipeline
from .image_segmentation import ImageSegmentationPipeline
from .image_to_text import ImageToTextPipeline
from .object_detection import ObjectDetectionPipeline
from .question_answering import QuestionAnsweringArgumentHandler, QuestionAnsweringPipeline
from .table_question_answering import TableQuestionAnsweringArgumentHandler, TableQuestionAnsweringPipeline
Expand Down Expand Up @@ -305,8 +305,8 @@
"default": {"model": {"pt": ("facebook/detr-resnet-50-panoptic", "fc15262")}},
"type": "image",
},
"image2text-generation": {
"impl": Image2TextGenerationPipeline,
"image-to-text": {
"impl": ImageToTextPipeline,
"tf": (TFAutoModelForVision2Seq,) if is_tf_available() else (),
"pt": (AutoModelForVision2Seq,) if is_torch_available() else (),
"default": {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -26,13 +26,12 @@


@add_end_docstrings(PIPELINE_INIT_ARGS)
class Image2TextGenerationPipeline(Pipeline):
class ImageToTextPipeline(Pipeline):
"""
Image2Text Generation pipeline using a `AutoModelForVision2Seq`. This pipeline predicts a caption for a given
image.
Image To Text pipeline using a `AutoModelForVision2Seq`. This pipeline predicts a caption for a given image.
This image to text generation pipeline can currently be loaded from pipeline() using the following task identifier:
"image2text-generation".
This image to text pipeline can currently be loaded from pipeline() using the following task identifier:
"image-to-text".
See the list of available models on
[huggingface.co/models](https://huggingface.co/models?pipeline_tag=image-to-text).
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -33,12 +33,12 @@ def open(*args, **kwargs):

@is_pipeline_test
@require_vision
class Image2TextGenerationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
class ImageToTextPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
model_mapping = MODEL_FOR_VISION_2_SEQ_MAPPING
tf_model_mapping = TF_MODEL_FOR_VISION_2_SEQ_MAPPING

def get_test_pipeline(self, model, tokenizer, feature_extractor):
pipe = pipeline("image2text-generation", model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)
pipe = pipeline("image-to-text", model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)
examples = [
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
"./tests/fixtures/tests_samples/COCO/000000039769.png",
Expand All @@ -57,7 +57,7 @@ def run_pipeline_test(self, pipe, examples):

@require_tf
def test_small_model_tf(self):
pipe = pipeline("image2text-generation", model="hf-internal-testing/tiny-random-vit-gpt2")
pipe = pipeline("image-to-text", model="hf-internal-testing/tiny-random-vit-gpt2")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"

outputs = pipe(image)
Expand Down Expand Up @@ -104,7 +104,7 @@ def test_small_model_tf(self):

@require_torch
def test_small_model_pt(self):
pipe = pipeline("image2text-generation", model="hf-internal-testing/tiny-random-vit-gpt2")
pipe = pipeline("image-to-text", model="hf-internal-testing/tiny-random-vit-gpt2")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"

outputs = pipe(image)
Expand Down Expand Up @@ -137,7 +137,7 @@ def test_small_model_pt(self):
@slow
@require_torch
def test_large_model_pt(self):
pipe = pipeline("image2text-generation", model="ydshieh/vit-gpt2-coco-en")
pipe = pipeline("image-to-text", model="ydshieh/vit-gpt2-coco-en")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"

outputs = pipe(image)
Expand All @@ -155,7 +155,7 @@ def test_large_model_pt(self):
@slow
@require_tf
def test_large_model_tf(self):
pipe = pipeline("image2text-generation", model="ydshieh/vit-gpt2-coco-en")
pipe = pipeline("image-to-text", model="ydshieh/vit-gpt2-coco-en")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"

outputs = pipe(image)
Expand Down

0 comments on commit 129d732

Please sign in to comment.