Skip to content

Commit

Permalink
[MBartTokenizer] remove dep on xlm-roberta tokenizer (#15201)
Browse files Browse the repository at this point in the history
  • Loading branch information
patil-suraj authored Jan 18, 2022
1 parent 84c60a7 commit 2ae3be5
Show file tree
Hide file tree
Showing 2 changed files with 219 additions and 70 deletions.
180 changes: 143 additions & 37 deletions src/transformers/models/mbart/tokenization_mbart.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,16 +13,20 @@
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from contextlib import contextmanager
from typing import List, Optional
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple

from ...tokenization_utils import BatchEncoding
import sentencepiece as spm

from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
from ..xlm_roberta.tokenization_xlm_roberta import XLMRobertaTokenizer


logger = logging.get_logger(__name__)

SPIECE_UNDERLINE = "▁"

VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"}

Expand All @@ -38,41 +42,17 @@
"facebook/mbart-large-cc25": 1024,
}

FAIRSEQ_LANGUAGE_CODES = [
"ar_AR",
"cs_CZ",
"de_DE",
"en_XX",
"es_XX",
"et_EE",
"fi_FI",
"fr_XX",
"gu_IN",
"hi_IN",
"it_IT",
"ja_XX",
"kk_KZ",
"ko_KR",
"lt_LT",
"lv_LV",
"my_MM",
"ne_NP",
"nl_XX",
"ro_RO",
"ru_RU",
"si_LK",
"tr_TR",
"vi_VN",
"zh_CN",
]


class MBartTokenizer(XLMRobertaTokenizer):
# fmt: off
FAIRSEQ_LANGUAGE_CODES = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"]
# fmt: on


class MBartTokenizer(PreTrainedTokenizer):
"""
Construct an MBART tokenizer.
[`MBartTokenizer`] is a subclass of [`XLMRobertaTokenizer`]. Refer to superclass [`XLMRobertaTokenizer`] for usage
examples and documentation concerning the initialization parameters and other methods.
Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on
[SentencePiece](https://github.com/google/sentencepiece).
The tokenization method is `<tokens> <eos> <language code>` for source language documents, and ``<language code>
<tokens> <eos>``` for target language documents.
Expand All @@ -94,22 +74,66 @@ class MBartTokenizer(XLMRobertaTokenizer):
vocab_files_names = VOCAB_FILES_NAMES
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
model_input_names = ["input_ids", "attention_mask"]

prefix_tokens: List[int] = []
suffix_tokens: List[int] = []

def __init__(
self, *args, tokenizer_file=None, src_lang=None, tgt_lang=None, additional_special_tokens=None, **kwargs
self,
vocab_file,
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
tokenizer_file=None,
src_lang=None,
tgt_lang=None,
sp_model_kwargs: Optional[Dict[str, Any]] = None,
additional_special_tokens=None,
**kwargs
):

# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token

self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs

super().__init__(
*args,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
tokenizer_file=tokenizer_file,
src_lang=src_lang,
tgt_lang=tgt_lang,
additional_special_tokens=additional_special_tokens,
sp_model_kwargs=self.sp_model_kwargs,
**kwargs,
)

self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(str(vocab_file))
self.vocab_file = vocab_file

# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'

# Mimic fairseq token-to-id alignment for the first 4 token
self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}

# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
self.fairseq_offset = 1

self.sp_model_size = len(self.sp_model)
self.lang_code_to_id = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(FAIRSEQ_LANGUAGE_CODES)
Expand All @@ -132,6 +156,22 @@ def __init__(
self.tgt_lang = tgt_lang
self.set_src_lang_special_tokens(self._src_lang)

def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
return state

def __setstate__(self, d):
self.__dict__ = d

# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}

self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)

@property
def vocab_size(self):
return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token
Expand Down Expand Up @@ -202,6 +242,31 @@ def build_inputs_with_special_tokens(
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens

def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. mBART does not
make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""

sep = [self.sep_token_id]
cls = [self.cls_token_id]

if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]

def _build_translation_inputs(
self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs
):
Expand All @@ -214,6 +279,47 @@ def _build_translation_inputs(
inputs["forced_bos_token_id"] = tgt_lang_id
return inputs

def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab

def _tokenize(self, text: str) -> List[str]:
return self.sp_model.encode(text, out_type=str)

def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
spm_id = self.sp_model.PieceToId(token)

# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id

def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset)

def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (strings for sub-words) in a single string."""
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
return out_string

def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)

if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)

return (out_vocab_file,)

def prepare_seq2seq_batch(
self,
src_texts: List[str],
Expand Down
Loading

0 comments on commit 2ae3be5

Please sign in to comment.