Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

upgrade sentencepiece version #13564

Merged
merged 4 commits into from
Sep 15, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 10 additions & 10 deletions examples/research_projects/lxmert/demo.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -46,10 +46,10 @@
"ATTR_URL = \"https://raw.githubusercontent.com/airsplay/py-bottom-up-attention/master/demo/data/genome/1600-400-20/attributes_vocab.txt\"\n",
"GQA_URL = \"https://raw.githubusercontent.com/airsplay/lxmert/master/data/gqa/trainval_label2ans.json\"\n",
"VQA_URL = \"https://raw.githubusercontent.com/airsplay/lxmert/master/data/vqa/trainval_label2ans.json\"\n",
" \n",
"\n",
"\n",
"# for visualizing output\n",
"def showarray(a, fmt='jpeg'):\n",
"def showarray(a, fmt=\"jpeg\"):\n",
" a = np.uint8(np.clip(a, 0, 255))\n",
" f = io.BytesIO()\n",
" PIL.Image.fromarray(a).save(f, fmt)\n",
Expand Down Expand Up @@ -118,17 +118,17 @@
}
],
"source": [
"#image viz\n",
"# image viz\n",
"frcnn_visualizer = SingleImageViz(URL, id2obj=objids, id2attr=attrids)\n",
"# run frcnn\n",
"images, sizes, scales_yx = image_preprocess(URL)\n",
"output_dict = frcnn(\n",
" images, \n",
" sizes, \n",
" scales_yx=scales_yx, \n",
" images,\n",
" sizes,\n",
" scales_yx=scales_yx,\n",
" padding=\"max_detections\",\n",
" max_detections=frcnn_cfg.max_detections,\n",
" return_tensors=\"pt\"\n",
" return_tensors=\"pt\",\n",
")\n",
"# add boxes and labels to the image\n",
"\n",
Expand Down Expand Up @@ -174,7 +174,7 @@
" \"Where is this scene?\",\n",
" \"what is the man riding?\",\n",
" \"What is the man wearing?\",\n",
" \"What is the color of the horse?\"\n",
" \"What is the color of the horse?\",\n",
"]\n",
"test_questions_for_url2 = [\n",
" \"Where is the cat?\",\n",
Expand All @@ -184,7 +184,7 @@
" \"What is the shape of the monitor?\",\n",
"]\n",
"\n",
"#Very important that the boxes are normalized\n",
"# Very important that the boxes are normalized\n",
"normalized_boxes = output_dict.get(\"normalized_boxes\")\n",
"features = output_dict.get(\"roi_features\")\n",
"\n",
Expand All @@ -200,7 +200,7 @@
" return_token_type_ids=True,\n",
" return_attention_mask=True,\n",
" add_special_tokens=True,\n",
" return_tensors=\"pt\"\n",
" return_tensors=\"pt\",\n",
" )\n",
"\n",
" # run lxmert(s)\n",
Expand Down
155 changes: 83 additions & 72 deletions examples/research_projects/movement-pruning/Saving_PruneBERT.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@
"\n",
"from transformers import *\n",
"\n",
"os.chdir('../../')"
"os.chdir(\"../../\")"
]
},
{
Expand All @@ -70,15 +70,15 @@
"# Load fine-pruned model and quantize the model\n",
"\n",
"model = BertForQuestionAnswering.from_pretrained(\"huggingface/prunebert-base-uncased-6-finepruned-w-distil-squad\")\n",
"model.to('cpu')\n",
"model.to(\"cpu\")\n",
"\n",
"quantized_model = torch.quantization.quantize_dynamic(\n",
" model=model,\n",
" qconfig_spec = {\n",
" nn.Linear : torch.quantization.default_dynamic_qconfig,\n",
" },\n",
" dtype=torch.qint8,\n",
" )\n",
" model=model,\n",
" qconfig_spec={\n",
" nn.Linear: torch.quantization.default_dynamic_qconfig,\n",
" },\n",
" dtype=torch.qint8,\n",
")\n",
"# print(quantized_model)\n",
"\n",
"qtz_st = quantized_model.state_dict()"
Expand All @@ -92,10 +92,14 @@
"source": [
"# Saving the original (encoder + classifier) in the standard torch.save format\n",
"\n",
"dense_st = {name: param for name, param in model.state_dict().items() \n",
" if \"embedding\" not in name and \"pooler\" not in name}\n",
"torch.save(dense_st, 'dbg/dense_squad.pt',)\n",
"dense_mb_size = os.path.getsize(\"dbg/dense_squad.pt\")\n"
"dense_st = {\n",
" name: param for name, param in model.state_dict().items() if \"embedding\" not in name and \"pooler\" not in name\n",
"}\n",
"torch.save(\n",
" dense_st,\n",
" \"dbg/dense_squad.pt\",\n",
")\n",
"dense_mb_size = os.path.getsize(\"dbg/dense_squad.pt\")"
]
},
{
Expand Down Expand Up @@ -198,23 +202,23 @@
" if \"dtype\" not in name and param.is_quantized:\n",
" print(\"Decompose quantization for\", name)\n",
" # We need to extract the scale, the zero_point and the int_repr for the quantized tensor and modules\n",
" scale = param.q_scale() # torch.tensor(1,) - float32\n",
" zero_point = param.q_zero_point() # torch.tensor(1,) - int32\n",
" scale = param.q_scale() # torch.tensor(1,) - float32\n",
" zero_point = param.q_zero_point() # torch.tensor(1,) - int32\n",
" elementary_qtz_st[f\"{name}.scale\"] = scale\n",
" elementary_qtz_st[f\"{name}.zero_point\"] = zero_point\n",
"\n",
" # We assume the int_repr is sparse and compute its CSR representation\n",
" # Only the FCs in the encoder are actually sparse\n",
" int_repr = param.int_repr() # torch.tensor(nb_rows, nb_columns) - int8\n",
" int_repr_cs = sparse.csr_matrix(int_repr) # scipy.sparse.csr.csr_matrix\n",
"\n",
" elementary_qtz_st[f\"{name}.int_repr.data\"] = int_repr_cs.data # np.array int8\n",
" elementary_qtz_st[f\"{name}.int_repr.indptr\"] = int_repr_cs.indptr # np.array int32\n",
" assert max(int_repr_cs.indices) < 65535 # If not, we shall fall back to int32\n",
" elementary_qtz_st[f\"{name}.int_repr.indices\"] = np.uint16(int_repr_cs.indices) # np.array uint16\n",
" elementary_qtz_st[f\"{name}.int_repr.shape\"] = int_repr_cs.shape # tuple(int, int)\n",
" int_repr = param.int_repr() # torch.tensor(nb_rows, nb_columns) - int8\n",
" int_repr_cs = sparse.csr_matrix(int_repr) # scipy.sparse.csr.csr_matrix\n",
"\n",
" elementary_qtz_st[f\"{name}.int_repr.data\"] = int_repr_cs.data # np.array int8\n",
" elementary_qtz_st[f\"{name}.int_repr.indptr\"] = int_repr_cs.indptr # np.array int32\n",
" assert max(int_repr_cs.indices) < 65535 # If not, we shall fall back to int32\n",
" elementary_qtz_st[f\"{name}.int_repr.indices\"] = np.uint16(int_repr_cs.indices) # np.array uint16\n",
" elementary_qtz_st[f\"{name}.int_repr.shape\"] = int_repr_cs.shape # tuple(int, int)\n",
" else:\n",
" elementary_qtz_st[name] = param\n"
" elementary_qtz_st[name] = param"
]
},
{
Expand All @@ -225,7 +229,7 @@
"source": [
"# Create mapping from torch.dtype to string description (we could also used an int8 instead of string)\n",
"str_2_dtype = {\"qint8\": torch.qint8}\n",
"dtype_2_str = {torch.qint8: \"qint8\"}\n"
"dtype_2_str = {torch.qint8: \"qint8\"}"
]
},
{
Expand All @@ -246,11 +250,17 @@
"source": [
"# Saving the pruned (encoder + classifier) in the standard torch.save format\n",
"\n",
"dense_optimized_st = {name: param for name, param in elementary_qtz_st.items() \n",
" if \"embedding\" not in name and \"pooler\" not in name}\n",
"torch.save(dense_optimized_st, 'dbg/dense_squad_optimized.pt',)\n",
"print(\"Encoder Size (MB) - Sparse & Quantized - `torch.save`:\",\n",
" round(os.path.getsize(\"dbg/dense_squad_optimized.pt\")/1e6, 2))\n"
"dense_optimized_st = {\n",
" name: param for name, param in elementary_qtz_st.items() if \"embedding\" not in name and \"pooler\" not in name\n",
"}\n",
"torch.save(\n",
" dense_optimized_st,\n",
" \"dbg/dense_squad_optimized.pt\",\n",
")\n",
"print(\n",
" \"Encoder Size (MB) - Sparse & Quantized - `torch.save`:\",\n",
" round(os.path.getsize(\"dbg/dense_squad_optimized.pt\") / 1e6, 2),\n",
")"
]
},
{
Expand Down Expand Up @@ -287,7 +297,7 @@
"# Save the decomposed state_dict with an HDF5 file\n",
"# Saving only the encoder + QA Head\n",
"\n",
"with h5py.File('dbg/squad_sparse.h5','w') as hf:\n",
"with h5py.File(\"dbg/squad_sparse.h5\", \"w\") as hf:\n",
" for name, param in elementary_qtz_st.items():\n",
" if \"embedding\" in name:\n",
" print(f\"Skip {name}\")\n",
Expand Down Expand Up @@ -318,18 +328,18 @@
" elif type(param) == torch.dtype:\n",
" # dtype - tensor _packed_params.dtype\n",
" hf.attrs[name] = dtype_2_str[param]\n",
" \n",
"\n",
" else:\n",
" hf.create_dataset(name, data=param, compression=\"gzip\", compression_opts=9)\n",
"\n",
"\n",
"with open('dbg/metadata.json', 'w') as f:\n",
" f.write(json.dumps(qtz_st._metadata)) \n",
"with open(\"dbg/metadata.json\", \"w\") as f:\n",
" f.write(json.dumps(qtz_st._metadata))\n",
"\n",
"size = os.path.getsize(\"dbg/squad_sparse.h5\") + os.path.getsize(\"dbg/metadata.json\")\n",
"print(\"\")\n",
"print(\"Encoder Size (MB) - Dense: \", round(dense_mb_size/1e6, 2))\n",
"print(\"Encoder Size (MB) - Sparse & Quantized:\", round(size/1e6, 2))\n"
"print(\"Encoder Size (MB) - Dense: \", round(dense_mb_size / 1e6, 2))\n",
"print(\"Encoder Size (MB) - Sparse & Quantized:\", round(size / 1e6, 2))"
]
},
{
Expand All @@ -350,15 +360,15 @@
"# Save the decomposed state_dict to HDF5 storage\n",
"# Save everything in the architecutre (embedding + encoder + QA Head)\n",
"\n",
"with h5py.File('dbg/squad_sparse_with_embs.h5','w') as hf:\n",
"with h5py.File(\"dbg/squad_sparse_with_embs.h5\", \"w\") as hf:\n",
" for name, param in elementary_qtz_st.items():\n",
"# if \"embedding\" in name:\n",
"# print(f\"Skip {name}\")\n",
"# continue\n",
" # if \"embedding\" in name:\n",
" # print(f\"Skip {name}\")\n",
" # continue\n",
"\n",
"# if \"pooler\" in name:\n",
"# print(f\"Skip {name}\")\n",
"# continue\n",
" # if \"pooler\" in name:\n",
" # print(f\"Skip {name}\")\n",
" # continue\n",
"\n",
" if type(param) == torch.Tensor:\n",
" if param.numel() == 1:\n",
Expand All @@ -381,17 +391,16 @@
" elif type(param) == torch.dtype:\n",
" # dtype - tensor _packed_params.dtype\n",
" hf.attrs[name] = dtype_2_str[param]\n",
" \n",
"\n",
" else:\n",
" hf.create_dataset(name, data=param, compression=\"gzip\", compression_opts=9)\n",
"\n",
"\n",
"\n",
"with open('dbg/metadata.json', 'w') as f:\n",
" f.write(json.dumps(qtz_st._metadata)) \n",
"with open(\"dbg/metadata.json\", \"w\") as f:\n",
" f.write(json.dumps(qtz_st._metadata))\n",
"\n",
"size = os.path.getsize(\"dbg/squad_sparse_with_embs.h5\") + os.path.getsize(\"dbg/metadata.json\")\n",
"print('\\nSize (MB):', round(size/1e6, 2))\n"
"print(\"\\nSize (MB):\", round(size / 1e6, 2))"
]
},
{
Expand All @@ -411,10 +420,10 @@
"\n",
"reconstructed_elementary_qtz_st = {}\n",
"\n",
"hf = h5py.File('dbg/squad_sparse_with_embs.h5','r')\n",
"hf = h5py.File(\"dbg/squad_sparse_with_embs.h5\", \"r\")\n",
"\n",
"for attr_name, attr_param in hf.attrs.items():\n",
" if 'shape' in attr_name:\n",
" if \"shape\" in attr_name:\n",
" attr_param = tuple(attr_param)\n",
" elif \".scale\" in attr_name:\n",
" if \"_packed_params\" in attr_name:\n",
Expand All @@ -430,20 +439,20 @@
" attr_param = str_2_dtype[attr_param]\n",
" reconstructed_elementary_qtz_st[attr_name] = attr_param\n",
" # print(f\"Unpack {attr_name}\")\n",
" \n",
"\n",
"# Get the tensors/arrays\n",
"for data_name, data_param in hf.items():\n",
" if \"LayerNorm\" in data_name or \"_packed_params.bias\" in data_name:\n",
" reconstructed_elementary_qtz_st[data_name] = torch.from_numpy(np.array(data_param))\n",
" elif \"embedding\" in data_name:\n",
" reconstructed_elementary_qtz_st[data_name] = torch.from_numpy(np.array(data_param))\n",
" else: # _packed_params.weight.int_repr.data, _packed_params.weight.int_repr.indices and _packed_params.weight.int_repr.indptr\n",
" else: # _packed_params.weight.int_repr.data, _packed_params.weight.int_repr.indices and _packed_params.weight.int_repr.indptr\n",
" data_param = np.array(data_param)\n",
" if \"indices\" in data_name:\n",
" data_param = np.array(data_param, dtype=np.int32)\n",
" reconstructed_elementary_qtz_st[data_name] = data_param\n",
" # print(f\"Unpack {data_name}\")\n",
" \n",
"\n",
"\n",
"hf.close()"
]
Expand Down Expand Up @@ -484,27 +493,29 @@
"for name, param in reconstructed_elementary_qtz_st.items():\n",
" if \"weight.int_repr.indptr\" in name:\n",
" prefix_ = name[:-16]\n",
" data = reconstructed_elementary_qtz_st[f\"{prefix_}.int_repr.data\"]\n",
" indptr = reconstructed_elementary_qtz_st[f\"{prefix_}.int_repr.indptr\"]\n",
" data = reconstructed_elementary_qtz_st[f\"{prefix_}.int_repr.data\"]\n",
" indptr = reconstructed_elementary_qtz_st[f\"{prefix_}.int_repr.indptr\"]\n",
" indices = reconstructed_elementary_qtz_st[f\"{prefix_}.int_repr.indices\"]\n",
" shape = reconstructed_elementary_qtz_st[f\"{prefix_}.int_repr.shape\"]\n",
" shape = reconstructed_elementary_qtz_st[f\"{prefix_}.int_repr.shape\"]\n",
"\n",
" int_repr = sparse.csr_matrix(arg1=(data, indices, indptr),\n",
" shape=shape)\n",
" int_repr = sparse.csr_matrix(arg1=(data, indices, indptr), shape=shape)\n",
" int_repr = torch.tensor(int_repr.todense())\n",
"\n",
" scale = reconstructed_elementary_qtz_st[f\"{prefix_}.scale\"]\n",
" zero_point = reconstructed_elementary_qtz_st[f\"{prefix_}.zero_point\"]\n",
" weight = torch._make_per_tensor_quantized_tensor(int_repr,\n",
" scale,\n",
" zero_point)\n",
" weight = torch._make_per_tensor_quantized_tensor(int_repr, scale, zero_point)\n",
"\n",
" reconstructed_qtz_st[f\"{prefix_}\"] = weight\n",
" elif \"int_repr.data\" in name or \"int_repr.shape\" in name or \"int_repr.indices\" in name or \\\n",
" \"weight.scale\" in name or \"weight.zero_point\" in name:\n",
" elif (\n",
" \"int_repr.data\" in name\n",
" or \"int_repr.shape\" in name\n",
" or \"int_repr.indices\" in name\n",
" or \"weight.scale\" in name\n",
" or \"weight.zero_point\" in name\n",
" ):\n",
" continue\n",
" else:\n",
" reconstructed_qtz_st[name] = param\n"
" reconstructed_qtz_st[name] = param"
]
},
{
Expand Down Expand Up @@ -556,17 +567,17 @@
"source": [
"# Load the re-constructed state dict into a model\n",
"\n",
"dummy_model = BertForQuestionAnswering.from_pretrained('bert-base-uncased')\n",
"dummy_model.to('cpu')\n",
"dummy_model = BertForQuestionAnswering.from_pretrained(\"bert-base-uncased\")\n",
"dummy_model.to(\"cpu\")\n",
"\n",
"reconstructed_qtz_model = torch.quantization.quantize_dynamic(\n",
" model=dummy_model,\n",
" qconfig_spec = None,\n",
" dtype=torch.qint8,\n",
" )\n",
" model=dummy_model,\n",
" qconfig_spec=None,\n",
" dtype=torch.qint8,\n",
")\n",
"\n",
"reconstructed_qtz_st = OrderedDict(reconstructed_qtz_st)\n",
"with open('dbg/metadata.json', 'r') as read_file:\n",
"with open(\"dbg/metadata.json\", \"r\") as read_file:\n",
" metadata = json.loads(read_file.read())\n",
"reconstructed_qtz_st._metadata = metadata\n",
"\n",
Expand Down Expand Up @@ -596,8 +607,8 @@
" mask = torch.ones(size=(N, 128))\n",
"\n",
" y_reconstructed = reconstructed_qtz_model(input_ids=inputs, attention_mask=mask)[0]\n",
" y = quantized_model(input_ids=inputs, attention_mask=mask)[0]\n",
" \n",
" y = quantized_model(input_ids=inputs, attention_mask=mask)[0]\n",
"\n",
" assert torch.all(torch.eq(y, y_reconstructed))\n",
"print(\"Sanity check passed\")"
]
Expand Down
Loading