Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add GGUF for Mamba #34200

Merged
merged 6 commits into from
Oct 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/source/en/gguf.md
Original file line number Diff line number Diff line change
Expand Up @@ -86,6 +86,7 @@ For now the supported model architectures are the architectures that have been v
- GPT2
- Starcoder2
- T5
- Mamba

## Example usage

Expand Down
25 changes: 25 additions & 0 deletions src/transformers/integrations/ggml.py
Original file line number Diff line number Diff line change
Expand Up @@ -235,6 +235,19 @@
"output.weight": "lm_head.weight",
"output_norm": "model.norm",
},
"mamba": {
"token_embd": "backbone.embeddings",
"blk": "backbone.layers",
"ssm_a": "mixer.A_log",
"ssm_conv1d": "mixer.conv1d",
"ssm_in": "mixer.in_proj",
"ssm_out": "mixer.out_proj",
"ssm_x": "mixer.x_proj",
"ssm_dt": "mixer.dt_proj",
"attn_norm": "norm",
"output_norm": "backbone.norm_f",
"output.weight": "lm_head.weight",
},
}


Expand Down Expand Up @@ -373,6 +386,17 @@
"attention.head_count_kv": "num_key_value_heads",
"attention.layer_norm_epsilon": "norm_epsilon",
},
"mamba": {
"vocab_size": "vocab_size",
"context_length": "max_position_embeddings",
"embedding_length": "hidden_size",
"attention.layer_norm_rms_epsilon": "layer_norm_epsilon",
"block_count": "num_hidden_layers",
"ssm.conv_kernel": "conv_kernel",
"ssm.state_size": "state_size",
"ssm.time_step_rank": "time_step_rank",
"ssm.inner_size": "intermediate_size",
},
}

GGUF_TOKENIZER_MAPPING = {
Expand Down Expand Up @@ -768,6 +792,7 @@ def converted(self) -> Tokenizer:
"gpt2": GGUFGPTConverter,
"starcoder2": GGUFGPTConverter,
"t5": GGUFT5Converter,
"mamba": GGUFGPTConverter,
}


Expand Down
13 changes: 13 additions & 0 deletions src/transformers/modeling_gguf_pytorch_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -220,6 +220,19 @@ def load_gguf_checkpoint(gguf_checkpoint_path, return_tensors=False):
name = "lm_head.weight"
parsed_parameters["tensors"][name] = torch.from_numpy(np.copy(weights))
continue
if architecture == "mamba":
if "ssm_d" in name and "bias" not in name and "weight" not in name:
# ssm_d has conflicts with ssm_dt in name checking
# we have to explicitly check that name is exactly ssm_d
name = name.replace("ssm_d", "mixer.D")
if "ssm_conv1d.weight" in name:
# for compatibility tensor ssm_conv1d must be (5120, 1, 4]) dim,
# quantized one is (5120, 4)
weights = np.expand_dims(weights, axis=1)
if "ssm_a" in name:
# Original exponential implementation
# https://github.com/ggerganov/llama.cpp/blob/master/convert_hf_to_gguf.py#L2975-L2977
weights = np.log(-weights)

for tensor_name in tensor_key_mapping:
if tensor_name.format(bid=bid) in name:
Expand Down
56 changes: 54 additions & 2 deletions tests/quantization/ggml/test_ggml.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,6 +59,8 @@ class GgufIntegrationTests(unittest.TestCase):
starcoder2_model_id = "QuantFactory/starcoder2-3b-GGUF"
starcoder2_fp16_model_id = "brittlewis12/starcoder2-3b-GGUF"
starcoder2_original_model_id = "bigcode/starcoder2-3b"
mamba_original_model_id = "state-spaces/mamba-2.8b-hf"
mamba_model_id = "jpodivin/mamba-2.8b-hf-GGUF"

# standard quants
q4_0_gguf_model_id = "tinyllama-1.1b-chat-v1.0.Q4_0.gguf"
Expand Down Expand Up @@ -102,6 +104,8 @@ class GgufIntegrationTests(unittest.TestCase):
q6_k_gpt2_xl_model_id = "gpt2-xl.Q6_K.gguf"
q6_k_starcoder2_model_id = "starcoder2-3b.Q6_K.gguf"
fp16_starcoder2_gguf_model_id = "starcoder2-3b.fp16.gguf"
q6_k_mamba_model_id = "ggml-model-Q6_K.gguf"
fp16_mamba_model_id = "ggml-model-f16.gguf"

example_text = "Hello"

Expand Down Expand Up @@ -573,6 +577,8 @@ def test_gpt2_weights_conversion_fp16(self):
if layer_name in quantized_state_dict:
self.assertTrue(original_params.shape == quantized_state_dict[layer_name].shape)
torch.testing.assert_close(original_params, quantized_state_dict[layer_name])
else:
raise ValueError(f"Layer {layer_name} is not presented in GGUF model")

def test_gpt2_xl_Q6_K(self):
tokenizer = AutoTokenizer.from_pretrained(self.gpt2_xl_model_id, gguf_file=self.q6_k_gpt2_xl_model_id)
Expand Down Expand Up @@ -639,6 +645,8 @@ def test_falcon7b_weights_conversion_fp16(self):
if layer_name in quantized_state_dict:
self.assertTrue(original_params.shape == quantized_state_dict[layer_name].shape)
torch.testing.assert_close(original_params, quantized_state_dict[layer_name])
else:
raise ValueError(f"Layer {layer_name} is not presented in GGUF model")

def test_stablelm_q4_k_m(self):
model = AutoModelForCausalLM.from_pretrained(
Expand Down Expand Up @@ -708,6 +716,8 @@ def test_stablelm_weights_conversion_fp16(self):
if layer_name in converted_state_dict:
self.assertTrue(original_params.shape == converted_state_dict[layer_name].shape)
torch.testing.assert_close(original_params, converted_state_dict[layer_name])
else:
raise ValueError(f"Layer {layer_name} is not presented in GGUF model")

def test_starcoder2_weights_conversion_fp16(self):
original_model = AutoModelForCausalLM.from_pretrained(
Expand All @@ -727,10 +737,11 @@ def test_starcoder2_weights_conversion_fp16(self):
original_state_dict = original_model.state_dict()

for layer_name, original_params in original_state_dict.items():
if layer_name in converted_state_dict and layer_name != "lm_head.weight":
# quantized models do not contain "lm_head.weight" layer
if layer_name in converted_state_dict:
self.assertTrue(original_params.shape == converted_state_dict[layer_name].shape)
torch.testing.assert_close(original_params, converted_state_dict[layer_name])
else:
raise ValueError(f"Layer {layer_name} is not presented in GGUF model")

def test_starcoder2_q6_k(self):
example_function_text = "def print_hello_world():"
Expand All @@ -748,6 +759,47 @@ def test_starcoder2_q6_k(self):
EXPECTED_TEXT = 'def print_hello_world():\n print("Hello World")\n\ndef print'
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)

def test_mamba_weights_conversion_fp16(self):
original_model = AutoModelForCausalLM.from_pretrained(
self.mamba_original_model_id,
torch_dtype=torch.float16,
)

converted_model = AutoModelForCausalLM.from_pretrained(
self.mamba_model_id,
gguf_file=self.fp16_mamba_model_id,
torch_dtype=torch.float16,
)

converted_state_dict = converted_model.state_dict()
original_state_dict = original_model.state_dict()

for layer_name, original_params in original_state_dict.items():
if layer_name in converted_state_dict:
self.assertTrue(original_params.shape == converted_state_dict[layer_name].shape)
if "mixer.A_log" in layer_name:
# we should increase tolerance after exponential reversing
# and performing np.log(-weights) operation as numbers are slightly different
torch.testing.assert_close(original_params, converted_state_dict[layer_name], atol=1e-3, rtol=1e-3)
else:
torch.testing.assert_close(original_params, converted_state_dict[layer_name])
else:
raise ValueError(f"Layer {layer_name} is not presented in GGUF model")

def test_mamba_q6_k(self):
model = AutoModelForCausalLM.from_pretrained(
self.mamba_model_id,
gguf_file=self.q6_k_mamba_model_id,
torch_dtype=torch.float16,
)

tokenizer = AutoTokenizer.from_pretrained(self.mamba_model_id, gguf_file=self.q6_k_mamba_model_id)
text = tokenizer(self.example_text, return_tensors="pt")["input_ids"]
out = model.generate(text, max_new_tokens=10)

EXPECTED_TEXT = "Hello,I answerthe question.\n\nA"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)

def test_tokenization_xnli(self):
import tqdm
from datasets import load_dataset
Expand Down