Skip to content

Surf Data

Howard (Luhao) Wang edited this page Jun 12, 2019 · 1 revision

Import all necessary python packages

# Howard Wang 06/10/19
# CSE 145: Embedded systems and design

# Main Database: https://surf.smartfin.org/

# Analyzing data from real world categorized surf session data, 
# Data is labeled into PUSHING BOARD INTO WATER',
#'SYNC (FLIP BOARD UPSIDE DOWN TO SYNC DATA/FOOTAGE)',
#'FLIP BOARD RIGHT SIDE UP',
#'WALKING IN WATER',
#'PUSH-OFF',
#'PADDLING INTO WAVES',
#'SIT-UP',
#'FLOATING',
#"TURNING TO SURFER'S LEFT",
#'LAY-DOWN',
#'PADDLING FOR A WAVE',
#'POP-UP',
#'SURFING',
#'STEP-OFF',
#"TURNING TO SURFER'S RIGHT",
#'SIT-BACK',
#'OFF-BOARD',
#'PADDLING',
#'WIPE-OUT',
#'PULL-BACK LEASH',
#'PADDLING FOR POSITION',
#'NEW',
#'DONE, OUT OF WATER',
#'WALKING OUT OF WATER'

# MATPLOTLIB
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.animation as animation

#from mpl_toolkits.basemap import Basemap

# DATAFRAMES
import pandas as pd
import numpy as np

# SCIPY
from scipy import stats
from scipy import constants
from scipy import signal #added
from scipy.interpolate import CubicSpline
from scipy.interpolate import interp1d
from scipy.integrate import simps
from scipy.integrate import cumtrapz
import pylab as pylab

# SYSTEM and CONVERSION TOOLS
import math
import abc
import sys
import csv
import io
import os
import datetime
import pytz
import re

# MODELING AND GRAPHS
import peakutils
import statsmodels.api as sm

# URL REQUESTS
import requests

# VECTORS AND GRAPHICS
import mpld3
import folium
# import cmocean
import skinematics as skin
from skinematics import quat, vector, misc, rotmat, imus, view
import pygame

# PLOTTING TOOLS
from plotly import tools 
import plotly.offline
import plotly.graph_objs as go

plt.rc("font", size=14) 

#Scikit Learn
from sklearn import preprocessing
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
import seaborn as sns
sns.set(style="white")
sns.set(style="whitegrid", color_codes=True)

%matplotlib notebook
%matplotlib inline

print("Done!")
Done!

Use old surf session (15692)

# 14743 - Motion Control July 10th
# 14750 - Magnetometer Control July 11th
# 14814 - Pool Displacement Control July 17th
# 14815 - Compass Orientation (Lying on Charger Side) July 19th
# 14816 - Orientation w Higher Sampling (Lying on Charger Side) July 20th
# 14827 - Pool Displacement Control w Higher Sampling (Jul 23)
# 14888 - First Buoy Calibration Experiment (July 30)
# 15218 - Jasmine's Second Ride Sesh filmed with GoPro (Aug 29) //no footage
# 15629 - Jasmine's First Ride Sesh filmed with VIRB (Oct. 24) //first labelled footage!
# 15669 - Jasmine's Second Ride Sesh filmed with VIRB (Nov. 7) //second labelled footage!
# 15692 - Jasmine's 3rd Ride Sesh filmed with VIRB (Nov. 9) //third labelled footage!
# 15686 - Jasmine's 4th Ride Sesh filmed with VIRB (Nov. 11) //fourth labelled footage!

ride_ids = ['15692']

print("Done!")
Done!

Scrape motion and ocean csv data from smartfin database

#%% Fin ID scraper
# Input fin ID, get all ride IDs
# base URL to which we'll append given fin IDs
fin_url_base = 'http://surf.smartfin.org/fin/'

# Look for the following text in the HTML contents in fcn below
str_id_ride = 'rideId = \'' # backslash allows us to look for single quote
str_id_date = 'var date = \'' # backslash allows us to look for single quote

#%% Ride ID scraper
# Input ride ID, get ocean and motion CSVs
# Base URL to which we'll append given ride IDs
ride_url_base = 'https://surf.smartfin.org/ride/'

# Look for the following text in the HTML contents in fcn below
str_id_csv = 'img id="temperatureChart" class="chart" src="' 

def get_csv_from_ride_id(rid):
    # Build URL for each individual ride
    ride_url = ride_url_base+str(rid)
    print(ride_url)
    
    # Get contents of ride_url
    html_contents = requests.get(ride_url).text
    
    # Find CSV identifier 
    loc_csv_id = html_contents.find(str_id_csv)
    
    # Different based on whether user logged in with FB or Google
    offset_googleOAuth = [46, 114]
    offset_facebkOAuth = [46, 112]
    if html_contents[loc_csv_id+59] == 'f': # Facebook login
        off0 = offset_facebkOAuth[0]
        off1 = offset_facebkOAuth[1]
    else: # Google login
        off0 = offset_googleOAuth[0]
        off1 = offset_googleOAuth[1]
        
    csv_id_longstr = html_contents[loc_csv_id+off0:loc_csv_id+off1]
    
    # Stitch together full URL for CSV
    if ("media" in csv_id_longstr) & ("Calibration" not in html_contents): # other junk URLs can exist and break everything
        
        ocean_csv_url = 'https://surf.smartfin.org/'+csv_id_longstr+'Ocean.CSV'
        motion_csv_url = 'https://surf.smartfin.org/'+csv_id_longstr+'Motion.CSV'
        
        print(ocean_csv_url)
        # Go to ocean_csv_url and grab contents (theoretically, a CSV)
        oceanCSV = requests.get(ocean_csv_url).content
        ocean_df_small = pd.read_csv(io.StringIO(oceanCSV.decode('utf-8')))

        # Grab CSV from motion url
        motionCSV = requests.get(motion_csv_url).content
        motion_df_small = pd.read_csv(io.StringIO(motionCSV.decode('utf-8')))

        return ocean_df_small, motion_df_small

    else:
        ocean_df_small_resample = pd.DataFrame() # empty DF just so something is returned
        motion_df_small_resample = pd.DataFrame() 
        return ocean_df_small_resample, motion_df_small_resample

print("Done!")
Done!

Create Ocean and Motion DataFrames

appended_ocean_list = [] # list of DataFrames from original CSVs
appended_motion_list = []
appended_multiIndex = [] # fin_id & ride_id used to identify each DataFrame

## Nested loops (for each fin ID, find all ride IDs, then build a DataFrame from all ride CSVs)
## (Here, ride IDS are either ocean or motion dataframes)
count_good_fins = 0
    
# Loop over ride_ids and find CSVs
for rid in ride_ids:
    try:
        new_ocean_df, new_motion_df = get_csv_from_ride_id(rid) # get given ride's CSV from its ride ID using function above
        #print(len(new_ocean_df))
        #print(len(new_motion_df))
        if not new_ocean_df.empty: # Calibration rides, for example
            # Append only if DF isn't empty. There may be a better way to control empty DFs which are created above
            appended_multiIndex.append(str(rid)) # build list to be multiIndex of future DataFrame
            appended_ocean_list.append(new_ocean_df)
            appended_motion_list.append(new_motion_df)
            print("Ride data has been uploaded.")
            #print("Ride: ", rid, "data has been uploaded.")
            count_good_fins += 1
        
    except: 
        print("Ride threw an exception!")
        #print("Ride ", rid, "threw an exception!")    

#%% Build the "Master" DataFrame

# appended_ocean_df.summary()
df_keys = tuple(appended_multiIndex) # keys gotta be a tuple, a list which data in it cannot be changed
ocean_df = pd.concat(appended_ocean_list, keys = df_keys, names=['ride_id'])
motion_df = pd.concat(appended_motion_list, keys = df_keys, names = ['ride_id'])

print("done!")
https://surf.smartfin.org/ride/15692
https://surf.smartfin.org/media/201811/google_105349665704999793400_0006667E229D_181109191556_Ocean.CSV
Ride data has been uploaded.
done!

Make copy of motion data

#Drop the latitude and longitude values since most of them are Nan:
motion_df_dropped = motion_df.drop(columns=['Latitude', 'Longitude'])


#Drop the NAN values from the motion data:
motion_df_dropped = motion_df_dropped.dropna(axis=0, how='any')
print(motion_df_dropped)
                                          UTC        Time  IMU A1  IMU A2  \
ride_id                                                                     
15692   1      2018-11-09T19:16:03.8090+00:00  1414742887   493.0    48.0   
        2      2018-11-09T19:16:04.0610+00:00  1414743138   513.0    89.0   
        3      2018-11-09T19:16:04.3120+00:00  1414743387   494.0    92.0   
        4      2018-11-09T19:16:04.5650+00:00  1414743639   421.0   205.0   
        5      2018-11-09T19:16:04.8170+00:00  1414743889   534.0   306.0   
        6      2018-11-09T19:16:05.0680+00:00  1414744139   455.0   149.0   
        7      2018-11-09T19:16:05.3210+00:00  1414744390   474.0   342.0   
        8      2018-11-09T19:16:05.5730+00:00  1414744641   363.0   323.0   
        9      2018-11-09T19:16:05.8260+00:00  1414744892   -21.0   510.0   
        10     2018-11-09T19:16:06.0790+00:00  1414745144    35.0   283.0   
        11     2018-11-09T19:16:06.3300+00:00  1414745393   130.0   323.0   
        12     2018-11-09T19:16:06.5820+00:00  1414745644   -55.0   504.0   
        13     2018-11-09T19:16:06.8350+00:00  1414745895    58.0   420.0   
        14     2018-11-09T19:16:07.0870+00:00  1414746146  -179.0   454.0   
        15     2018-11-09T19:16:07.3300+00:00  1414746387    13.0   181.0   

        ...

[21645 rows x 11 columns]

Match data according to surf session footage

#Create an elapsed_timedelta field:

#timedelta_values = (motion_df_dropped['Time']-motion_df_dropped['Time'][0])
#motion_df_dropped.insert(loc=1, column='TimeDelta', value=timedelta_values, drop=True)
motion_df_dropped['TimeDelta'] = (motion_df_dropped['Time']-motion_df_dropped['Time'][0])
#print(elapsed_timedelta)
#motion_df_dropped.head()
motion_df_dropped.head(10)
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
UTC Time IMU A1 IMU A2 IMU A3 IMU G1 IMU G2 IMU G3 IMU M1 IMU M2 IMU M3 TimeDelta
ride_id
15692 1 2018-11-09T19:16:03.8090+00:00 1414742887 493.0 48.0 110.0 75.0 -124.0 -86.0 -309.0 209.0 39.0 0
2 2018-11-09T19:16:04.0610+00:00 1414743138 513.0 89.0 62.0 34.0 -36.0 -92.0 -320.0 194.0 38.0 251
3 2018-11-09T19:16:04.3120+00:00 1414743387 494.0 92.0 80.0 69.0 -63.0 -42.0 -329.0 189.0 49.0 500
4 2018-11-09T19:16:04.5650+00:00 1414743639 421.0 205.0 -104.0 192.0 -92.0 -37.0 -330.0 180.0 64.0 752
5 2018-11-09T19:16:04.8170+00:00 1414743889 534.0 306.0 -32.0 -421.0 -233.0 -229.0 -325.0 161.0 97.0 1002
6 2018-11-09T19:16:05.0680+00:00 1414744139 455.0 149.0 -102.0 -355.0 -376.0 -397.0 -337.0 117.0 151.0 1252
7 2018-11-09T19:16:05.3210+00:00 1414744390 474.0 342.0 -219.0 -234.0 -527.0 -465.0 -311.0 25.0 217.0 1503
8 2018-11-09T19:16:05.5730+00:00 1414744641 363.0 323.0 -131.0 60.0 -662.0 -305.0 -238.0 -8.0 272.0 1754
9 2018-11-09T19:16:05.8260+00:00 1414744892 -21.0 510.0 -447.0 78.0 -643.0 -153.0 -159.0 -21.0 321.0 2005
10 2018-11-09T19:16:06.0790+00:00 1414745144 35.0 283.0 -132.0 -114.0 -430.0 132.0 -86.0 -38.0 326.0 2257
#Footage sync code written by Alina: (Miulti-Column)

import time

#simple method: only walking, paddling, floating, surfing
#complex method: columns created based on footage file labels
def label_data( footage_file = '../../Footage/Footage.txt', labelling_method = 'simple', sync_threshold = 20000 ):
    
    #First, perform sync
    sync_buf = 0
    with open(footage_file) as file:
        for line in file:
            labelled_time = line.split(None, 2) 
            try:
                cur_time = time.strptime(labelled_time[0], '%M:%S')
            except:
                continue
            labelled_time[1] = labelled_time[1].rstrip()
            if labelled_time[1].lower() == 'sync': #Assumption that first word in sync line is "sync"
                sync_time = cur_time.tm_min * 60 * 1000 + cur_time.tm_sec * 1000
                index = 0
                start = 0
                end = 0
                #Syncing occurs when IMU A2 data is negative for a longer period than the provided threshold
                #Default is 20 seconds
                for data in motion_df_dropped['IMU A2']:
                    if data < 0 and start == 0:
                        start = motion_df_dropped['TimeDelta'][index]
                    elif data > 0 and start != 0:
                        end = motion_df_dropped['TimeDelta'][index]
                        if end - start > sync_threshold:
                            sync_buf = start - sync_time
                            break
                        start = 0
                    index += 1

    accepted_labels = set()
    if labelling_method == 'simple':
        accepted_labels = {'WALKING', 'PADDLING', 'FLOATING', 'SURFING'}

        #Create new DataFrame containing label info
        label_frame = pd.DataFrame(0, index = motion_df_dropped.index, columns = accepted_labels)
        for label in accepted_labels:
            label_frame[label] = [0] * len(motion_df_dropped['Time'])
    
    #Convention of labelled footage text: "MINUTE:SECOND LABEL"
    elapsed_time = 0
    cur_label = ''
    buffer = 0
    with open(footage_file) as file:
        for line in file:
            
            if labelling_method == 'simple':
                labelled_time = line.split(None, 2) #simple categorizes on a one-word basis
            else:
                labelled_time = line.split(None, 1) #complex requires the entire label
                
            #If the first word is not a properly formatted time, the line cannot be read
            try:
                cur_time = time.strptime(labelled_time[0], '%M:%S')
                cur_timeMS = cur_time.tm_min * 60 * 1000 + cur_time.tm_sec * 1000 + sync_buf
            except:
                continue
            labelled_time[1] = labelled_time[1].rstrip() #Remove potential newline
                
            #Check for end of video and modify buffer accordingly
            if labelled_time[1].lower() == 'end of video': #Assumption that label end video with "end of video"
                buffer += cur_timeMS
                
            #----Complex "mode" below: --------
                
            #Modify accepted labels list if reading a new label and in complex mode
            elif labelling_method == 'complex' and (labelled_time[1].upper() not in accepted_labels):
                accepted_labels.add(labelled_time[1].upper())
                if not cur_label:
                    label_frame = pd.DataFrame(0, index = motion_df_dropped.index, columns = accepted_labels)
                label_frame[labelled_time[1].upper()] = [0] * len(motion_df_dropped['Time'])
                
            if labelled_time[1].upper() in accepted_labels:
                while (elapsed_time < len(motion_df_dropped['Time']) and
                      (np.isnan(motion_df_dropped['TimeDelta'][elapsed_time]) or
                       motion_df_dropped['TimeDelta'][elapsed_time] < cur_timeMS + buffer)):
                    if cur_label != '':
                        label_frame[cur_label][elapsed_time] = 1
                    elapsed_time += 1
                if labelled_time[1].upper() != 'end of video':
                    cur_label = labelled_time[1].upper()

    labelled = pd.concat([motion_df_dropped, label_frame], axis = 1)

    return labelled

pd.options.display.max_rows = 5000
pd.options.display.max_columns = 5000
motion_df_simple = label_data('../../Footage/Footage3.txt', 'simple')
motion_df_simple.head(10)
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
UTC Time IMU A1 IMU A2 IMU A3 IMU G1 IMU G2 IMU G3 IMU M1 IMU M2 IMU M3 TimeDelta SURFING PADDLING WALKING FLOATING
ride_id
15692 1 2018-11-09T19:16:03.8090+00:00 1414742887 493.0 48.0 110.0 75.0 -124.0 -86.0 -309.0 209.0 39.0 0 0 0 0 0
2 2018-11-09T19:16:04.0610+00:00 1414743138 513.0 89.0 62.0 34.0 -36.0 -92.0 -320.0 194.0 38.0 251 0 0 0 0
3 2018-11-09T19:16:04.3120+00:00 1414743387 494.0 92.0 80.0 69.0 -63.0 -42.0 -329.0 189.0 49.0 500 0 0 0 0
4 2018-11-09T19:16:04.5650+00:00 1414743639 421.0 205.0 -104.0 192.0 -92.0 -37.0 -330.0 180.0 64.0 752 0 0 0 0
5 2018-11-09T19:16:04.8170+00:00 1414743889 534.0 306.0 -32.0 -421.0 -233.0 -229.0 -325.0 161.0 97.0 1002 0 0 0 0
6 2018-11-09T19:16:05.0680+00:00 1414744139 455.0 149.0 -102.0 -355.0 -376.0 -397.0 -337.0 117.0 151.0 1252 0 0 0 0
7 2018-11-09T19:16:05.3210+00:00 1414744390 474.0 342.0 -219.0 -234.0 -527.0 -465.0 -311.0 25.0 217.0 1503 0 0 0 0
8 2018-11-09T19:16:05.5730+00:00 1414744641 363.0 323.0 -131.0 60.0 -662.0 -305.0 -238.0 -8.0 272.0 1754 0 0 0 0
9 2018-11-09T19:16:05.8260+00:00 1414744892 -21.0 510.0 -447.0 78.0 -643.0 -153.0 -159.0 -21.0 321.0 2005 0 0 0 0
10 2018-11-09T19:16:06.0790+00:00 1414745144 35.0 283.0 -132.0 -114.0 -430.0 132.0 -86.0 -38.0 326.0 2257 0 0 0 0
motion_df_complex = label_data('../../Footage/Footage3.txt', 'complex')
motion_df_complex.head(10)
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
UTC Time IMU A1 IMU A2 IMU A3 IMU G1 IMU G2 IMU G3 IMU M1 IMU M2 IMU M3 TimeDelta SYNC FLIP BOARD RIGHT SIDE UP WALKING IN WATER PUSH-OFF PADDLING INTO WAVES SIT-UP FLOATING TURNING TO SURFER'S LEFT LAY-DOWN PADDLING FOR A WAVE POP-UP SURFING STEP-OFF TURNING TO SURFER'S RIGHT SIT-BACK OFF-BOARD PADDLING WIPE-OUT PULL-BACK LEASH PADDLING FOR POSITION NEW DISCARD DONE, OUT OF WATER WALKING OUT OF WATER
ride_id
15692 1 2018-11-09T19:16:03.8090+00:00 1414742887 493.0 48.0 110.0 75.0 -124.0 -86.0 -309.0 209.0 39.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2018-11-09T19:16:04.0610+00:00 1414743138 513.0 89.0 62.0 34.0 -36.0 -92.0 -320.0 194.0 38.0 251 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 2018-11-09T19:16:04.3120+00:00 1414743387 494.0 92.0 80.0 69.0 -63.0 -42.0 -329.0 189.0 49.0 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 2018-11-09T19:16:04.5650+00:00 1414743639 421.0 205.0 -104.0 192.0 -92.0 -37.0 -330.0 180.0 64.0 752 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 2018-11-09T19:16:04.8170+00:00 1414743889 534.0 306.0 -32.0 -421.0 -233.0 -229.0 -325.0 161.0 97.0 1002 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 2018-11-09T19:16:05.0680+00:00 1414744139 455.0 149.0 -102.0 -355.0 -376.0 -397.0 -337.0 117.0 151.0 1252 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 2018-11-09T19:16:05.3210+00:00 1414744390 474.0 342.0 -219.0 -234.0 -527.0 -465.0 -311.0 25.0 217.0 1503 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 2018-11-09T19:16:05.5730+00:00 1414744641 363.0 323.0 -131.0 60.0 -662.0 -305.0 -238.0 -8.0 272.0 1754 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 2018-11-09T19:16:05.8260+00:00 1414744892 -21.0 510.0 -447.0 78.0 -643.0 -153.0 -159.0 -21.0 321.0 2005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 2018-11-09T19:16:06.0790+00:00 1414745144 35.0 283.0 -132.0 -114.0 -430.0 132.0 -86.0 -38.0 326.0 2257 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
df1_complex = label_data('../../Footage/Footage.txt', 'complex')
df2_complex = label_data('../../Footage/Footage2.txt', 'complex')
df3_complex = label_data('../../Footage/Footage3.txt', 'complex')
df4_complex = label_data('../../Footage/Footage4.txt', 'complex')

df_concatenated = pd.concat([df1_complex, df2_complex, df3_complex, df4_complex])

print("Shape of first dataframe:", df1_complex.shape)
print("Shape of all combined dataframes:", df_concatenated.shape)

print("Printing dataframe...")
#print(df1_complex.head(10))
print(df_concatenated.head(10))
Shape of first dataframe: (21645, 33)
Shape of all combined dataframes: (86580, 41)
Printing dataframe...
            DISCARD  DONE  DONE, OUT OF WATER  END SURF SESH  \
ride_id                                                        
15692   1       0.0   NaN                 NaN            NaN   
        2       0.0   NaN                 NaN            NaN   
        3       0.0   NaN                 NaN            NaN   
        4       0.0   NaN                 NaN            NaN   
        5       0.0   NaN                 NaN            NaN   
        6       0.0   NaN                 NaN            NaN   
        7       0.0   NaN                 NaN            NaN   
        8       0.0   NaN                 NaN            NaN   
        9       0.0   NaN                 NaN            NaN   
        10      0.0   NaN                 NaN            NaN   

            FLIP BOARD RIGHT SIDE UP  FLOATING  IMU A1  IMU A2  IMU A3  \
ride_id                                                                  
15692   1                        NaN         0   493.0    48.0   110.0   
        2                        NaN         0   513.0    89.0    62.0   
        3                        NaN         0   494.0    92.0    80.0   
        4                        NaN         0   421.0   205.0  -104.0   
        5                        NaN         0   534.0   306.0   -32.0   
        6                        NaN         0   455.0   149.0  -102.0   
        7                        NaN         0   474.0   342.0  -219.0   
        8                        NaN         0   363.0   323.0  -131.0   
        9                        NaN         0   -21.0   510.0  -447.0   
        10                       NaN         0    35.0   283.0  -132.0   

            IMU G1  IMU G2  IMU G3  IMU M1  IMU M2  IMU M3  LAY-DOWN  NEW  \
ride_id                                                                     
15692   1     75.0  -124.0   -86.0  -309.0   209.0    39.0         0    0   
        2     34.0   -36.0   -92.0  -320.0   194.0    38.0         0    0   
        3     69.0   -63.0   -42.0  -329.0   189.0    49.0         0    0   
        4    192.0   -92.0   -37.0  -330.0   180.0    64.0         0    0   
        5   -421.0  -233.0  -229.0  -325.0   161.0    97.0         0    0   
        6   -355.0  -376.0  -397.0  -337.0   117.0   151.0         0    0   
        7   -234.0  -527.0  -465.0  -311.0    25.0   217.0         0    0   
        8     60.0  -662.0  -305.0  -238.0    -8.0   272.0         0    0   
        9     78.0  -643.0  -153.0  -159.0   -21.0   321.0         0    0   
        10  -114.0  -430.0   132.0   -86.0   -38.0   326.0         0    0   

            OFF-BOARD  PADDLING  PADDLING FOR A WAVE  PADDLING FOR POSITION  \
ride_id                                                                       
15692   1           0       NaN                    0                    0.0   
        2           0       NaN                    0                    0.0   
        3           0       NaN                    0                    0.0   
        4           0       NaN                    0                    0.0   
        5           0       NaN                    0                    0.0   
        6           0       NaN                    0                    0.0   
        7           0       NaN                    0                    0.0   
        8           0       NaN                    0                    0.0   
        9           0       NaN                    0                    0.0   
        10          0       NaN                    0                    0.0   

            PADDLING INTO WAVES  POP-UP  PULL-BACK LEASH  PUSH-OFF  SIT-BACK  \
ride_id                                                                        
15692   1                     0       0                0         0         0   
        2                     0       0                0         0         0   
        3                     0       0                0         0         0   
        4                     0       0                0         0         0   
        5                     0       0                0         0         0   
        6                     0       0                0         0         0   
        7                     0       0                0         0         0   
        8                     0       0                0         0         0   
        9                     0       0                0         0         0   
        10                    0       0                0         0         0   

            SIT-UP  STEP-OFF  STOMACH SURFING  SURFING  SYNC  \
ride_id                                                        
15692   1        0         0              NaN        0     0   
        2        0         0              NaN        0     0   
        3        0         0              NaN        0     0   
        4        0         0              NaN        0     0   
        5        0         0              NaN        0     0   
        6        0         0              NaN        0     0   
        7        0         0              NaN        0     0   
        8        0         0              NaN        0     0   
        9        0         0              NaN        0     0   
        10       0         0              NaN        0     0   

            TURNING TO SURFER'S LEFT  TURNING TO SURFER'S RIGHT  TURTLE ROLL  \
ride_id                                                                        
15692   1                          0                          0          0.0   
        2                          0                          0          0.0   
        3                          0                          0          0.0   
        4                          0                          0          0.0   
        5                          0                          0          0.0   
        6                          0                          0          0.0   
        7                          0                          0          0.0   
        8                          0                          0          0.0   
        9                          0                          0          0.0   
        10                         0                          0          0.0   

                  Time  TimeDelta  UNKNOWN                             UTC  \
ride_id                                                                      
15692   1   1414742887          0      NaN  2018-11-09T19:16:03.8090+00:00   
        2   1414743138        251      NaN  2018-11-09T19:16:04.0610+00:00   
        3   1414743387        500      NaN  2018-11-09T19:16:04.3120+00:00   
        4   1414743639        752      NaN  2018-11-09T19:16:04.5650+00:00   
        5   1414743889       1002      NaN  2018-11-09T19:16:04.8170+00:00   
        6   1414744139       1252      NaN  2018-11-09T19:16:05.0680+00:00   
        7   1414744390       1503      NaN  2018-11-09T19:16:05.3210+00:00   
        8   1414744641       1754      NaN  2018-11-09T19:16:05.5730+00:00   
        9   1414744892       2005      NaN  2018-11-09T19:16:05.8260+00:00   
        10  1414745144       2257      NaN  2018-11-09T19:16:06.0790+00:00   

            WALKING IN WATER  WALKING OUT OF WATER  WIPE-OUT  
ride_id                                                       
15692   1                  0                   NaN         0  
        2                  0                   NaN         0  
        3                  0                   NaN         0  
        4                  0                   NaN         0  
        5                  0                   NaN         0  
        6                  0                   NaN         0  
        7                  0                   NaN         0  
        8                  0                   NaN         0  
        9                  0                   NaN         0  
        10                 0                   NaN         0  


/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/ipykernel_launcher.py:6: FutureWarning:

Sorting because non-concatenation axis is not aligned. A future version
of pandas will change to not sort by default.

To accept the future behavior, pass 'sort=False'.

To retain the current behavior and silence the warning, pass 'sort=True'.
#correct IMU data

#make a deep copy of motion_df_labelled
df_converted = motion_df_complex.copy(deep = 'true')

#for rows in df_corrected
for row in range(0, df_converted.shape[0]):
    
    #convert acceleromters (new: m/s^2)
    df_converted.iloc[row, df_converted.columns.get_loc('IMU A1')] *= -0.019141  #forwards/backwards
    df_converted.iloc[row, df_converted.columns.get_loc('IMU A2')] *= 0.019141   #upside down/right side up
    df_converted.iloc[row, df_converted.columns.get_loc('IMU A3')] *= 0.019141   #sideways: negative = left, positive = right
 
    #convert gyroscopes (new: deg/s)
    df_converted.iloc[row, df_converted.columns.get_loc('IMU G1')] /= 8.2        #roll
    df_converted.iloc[row, df_converted.columns.get_loc('IMU G2')] /= 8.2        #yaw
    df_converted.iloc[row, df_converted.columns.get_loc('IMU G3')] /= 8.2        #pitch (flipping forwards/backwards)

motion_df_complex.head(10)
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
UTC Time IMU A1 IMU A2 IMU A3 IMU G1 IMU G2 IMU G3 IMU M1 IMU M2 IMU M3 TimeDelta SYNC FLIP BOARD RIGHT SIDE UP WALKING IN WATER PUSH-OFF PADDLING INTO WAVES SIT-UP FLOATING TURNING TO SURFER'S LEFT LAY-DOWN PADDLING FOR A WAVE POP-UP SURFING STEP-OFF TURNING TO SURFER'S RIGHT SIT-BACK OFF-BOARD PADDLING WIPE-OUT PULL-BACK LEASH PADDLING FOR POSITION NEW DISCARD DONE, OUT OF WATER WALKING OUT OF WATER
ride_id
15692 1 2018-11-09T19:16:03.8090+00:00 1414742887 493.0 48.0 110.0 75.0 -124.0 -86.0 -309.0 209.0 39.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2018-11-09T19:16:04.0610+00:00 1414743138 513.0 89.0 62.0 34.0 -36.0 -92.0 -320.0 194.0 38.0 251 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 2018-11-09T19:16:04.3120+00:00 1414743387 494.0 92.0 80.0 69.0 -63.0 -42.0 -329.0 189.0 49.0 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 2018-11-09T19:16:04.5650+00:00 1414743639 421.0 205.0 -104.0 192.0 -92.0 -37.0 -330.0 180.0 64.0 752 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 2018-11-09T19:16:04.8170+00:00 1414743889 534.0 306.0 -32.0 -421.0 -233.0 -229.0 -325.0 161.0 97.0 1002 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 2018-11-09T19:16:05.0680+00:00 1414744139 455.0 149.0 -102.0 -355.0 -376.0 -397.0 -337.0 117.0 151.0 1252 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 2018-11-09T19:16:05.3210+00:00 1414744390 474.0 342.0 -219.0 -234.0 -527.0 -465.0 -311.0 25.0 217.0 1503 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 2018-11-09T19:16:05.5730+00:00 1414744641 363.0 323.0 -131.0 60.0 -662.0 -305.0 -238.0 -8.0 272.0 1754 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 2018-11-09T19:16:05.8260+00:00 1414744892 -21.0 510.0 -447.0 78.0 -643.0 -153.0 -159.0 -21.0 321.0 2005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 2018-11-09T19:16:06.0790+00:00 1414745144 35.0 283.0 -132.0 -114.0 -430.0 132.0 -86.0 -38.0 326.0 2257 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
df_converted.head(10)
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
UTC Time IMU A1 IMU A2 IMU A3 IMU G1 IMU G2 IMU G3 IMU M1 IMU M2 IMU M3 TimeDelta SYNC FLIP BOARD RIGHT SIDE UP WALKING IN WATER PUSH-OFF PADDLING INTO WAVES SIT-UP FLOATING TURNING TO SURFER'S LEFT LAY-DOWN PADDLING FOR A WAVE POP-UP SURFING STEP-OFF TURNING TO SURFER'S RIGHT SIT-BACK OFF-BOARD PADDLING WIPE-OUT PULL-BACK LEASH PADDLING FOR POSITION NEW DISCARD DONE, OUT OF WATER WALKING OUT OF WATER
ride_id
15692 1 2018-11-09T19:16:03.8090+00:00 1414742887 -9.436513 0.918768 2.105510 9.146341 -15.121951 -10.487805 -309.0 209.0 39.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2018-11-09T19:16:04.0610+00:00 1414743138 -9.819333 1.703549 1.186742 4.146341 -4.390244 -11.219512 -320.0 194.0 38.0 251 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 2018-11-09T19:16:04.3120+00:00 1414743387 -9.455654 1.760972 1.531280 8.414634 -7.682927 -5.121951 -329.0 189.0 49.0 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 2018-11-09T19:16:04.5650+00:00 1414743639 -8.058361 3.923905 -1.990664 23.414634 -11.219512 -4.512195 -330.0 180.0 64.0 752 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 2018-11-09T19:16:04.8170+00:00 1414743889 -10.221294 5.857146 -0.612512 -51.341463 -28.414634 -27.926829 -325.0 161.0 97.0 1002 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 2018-11-09T19:16:05.0680+00:00 1414744139 -8.709155 2.852009 -1.952382 -43.292683 -45.853659 -48.414634 -337.0 117.0 151.0 1252 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 2018-11-09T19:16:05.3210+00:00 1414744390 -9.072834 6.546222 -4.191879 -28.536585 -64.268293 -56.707317 -311.0 25.0 217.0 1503 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 2018-11-09T19:16:05.5730+00:00 1414744641 -6.948183 6.182543 -2.507471 7.317073 -80.731707 -37.195122 -238.0 -8.0 272.0 1754 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 2018-11-09T19:16:05.8260+00:00 1414744892 0.401961 9.761910 -8.556027 9.512195 -78.414634 -18.658537 -159.0 -21.0 321.0 2005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 2018-11-09T19:16:06.0790+00:00 1414745144 -0.669935 5.416903 -2.526612 -13.902439 -52.439024 16.097561 -86.0 -38.0 326.0 2257 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
list(df_converted)
['UTC',
 'Time',
 'IMU A1',
 'IMU A2',
 'IMU A3',
 'IMU G1',
 'IMU G2',
 'IMU G3',
 'IMU M1',
 'IMU M2',
 'IMU M3',
 'TimeDelta',
 'SYNC',
 'FLIP BOARD RIGHT SIDE UP',
 'WALKING IN WATER',
 'PUSH-OFF',
 'PADDLING INTO WAVES',
 'SIT-UP',
 'FLOATING',
 "TURNING TO SURFER'S LEFT",
 'LAY-DOWN',
 'PADDLING FOR A WAVE',
 'POP-UP',
 'SURFING',
 'STEP-OFF',
 "TURNING TO SURFER'S RIGHT",
 'SIT-BACK',
 'OFF-BOARD',
 'PADDLING',
 'WIPE-OUT',
 'PULL-BACK LEASH',
 'PADDLING FOR POSITION',
 'NEW',
 'DISCARD',
 'DONE, OUT OF WATER',
 'WALKING OUT OF WATER']
## Drop data columns that we don't care about predicting/visualizing: 
df_converted = df_converted.drop(columns=["FLIP BOARD RIGHT SIDE UP", "NEW", "DONE, OUT OF WATER"])
#df_converted = df_converted.drop(columns!=["SURFING, FLOATING, PADDLING INTO WAVES, PADDLING FOR A WAVE, PADDLING FOR POSITION, PADDLING"])

Plot IMU Signals with Labels:

import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams['figure.figsize'] = [50, 10]

#define a function that plots a column of dataf in relation to time. color coded to match labels in dataf
#requires that:
#dataf has a 'TimeDelta' column
#labels: walking, surfing, floating, paddling

def createPlot (dataf, column):
    
        #create new data frame to be plotted
        #Only consider columns after Velocity
        dfPlot = pd.DataFrame(columns = ['TIME'] + list(dataf)[list(dataf).index('TimeDelta') + 1:], dtype = float)
        
        #add timedelta column from dataf to dfPlot
        dfPlot['TIME'] = dataf['TimeDelta']
        
        #get the index of the column to be graphed
        columnInd = dataf.columns.get_loc(column)
        
        #for each row in dfPlot (number of IMU readings)
        for row in range(0, dfPlot.shape[0]):
            
            #for the indexes of the label columns in dfPlot
            for col in range(1, dfPlot.shape[1]):
                
                #if a label in the row is 1 in dataf
                if dataf.iloc[row, dataf.columns.get_loc(dfPlot.columns[col])] == 1:
                    
                    #add the sensors value to the corresponding column in dfPlot
                    dfPlot.iloc[row, dfPlot.columns.get_loc(dfPlot.columns[col])] = dataf.iloc[row, columnInd]
                    #dfPlot.iloc[row, dfPlot.columns.get]
        
        #Set up colormap so that we don't see a repeat in color when graphing
        #plt.gca().set_prop_cycle('color',plt.cm.plasma(np.linspace(0,1,dfPlot.shape[1])))
        plt.gca().set_prop_cycle('color',plt.cm.tab20(np.linspace(0,1,dfPlot.shape[1])))
        for col in range (1, dfPlot.shape[1]):
            plt.plot(dfPlot['TIME'], dfPlot[list(dfPlot)[col]])
        
        plt.gca().legend(loc = 'lower left')
        plt.title(column)
        plt.xlabel("Time")
        plt.ylabel("IMU Data")

        #file_name = column
        #pdf_string = '.jpg'
        #file_name += pdf_string
        
        #plt.savefig(file_name)
        plt.show()
        
        return
#Need to clear kernel and then only run all above so that it plots on axes directly below, rather than on another plot
print("Creating Plots...")

createPlot(df_converted,'IMU A1')
createPlot(df_converted,'IMU A2')
createPlot(df_converted,'IMU A3')
createPlot(df_converted,'IMU G1')
createPlot(df_converted,'IMU G2')
createPlot(df_converted,'IMU G3')
createPlot(df_converted,'IMU M1')
createPlot(df_converted,'IMU M2')
createPlot(df_converted,'IMU M3')

print("Done")
Creating Plots...

png

png

png

png

png

png

png

png

png

Done

Select analyzable data

# Define function to choose floating data from graph and plot
def selectData (dataf, column):
    
        #create new data frame to be plotted
        #Only consider columns after Velocity
        dfPlot = pd.DataFrame(columns = ['TIME'] + list(dataf)[list(dataf).index('SIT-UP') + 1: list(dataf).index("FLOATING") + 1], dtype = float)
        
        #add timedelta column from dataf to dfPlot
        dfPlot['TIME'] = dataf['TimeDelta']
        
        #get the index of the column to be graphed
        columnInd = dataf.columns.get_loc(column)
        
        #for each row in dfPlot (number of IMU readings)
        for row in range(0, dfPlot.shape[0]):
            
            #for the indexes of the label columns in dfPlot
            for col in range(1, dfPlot.shape[1]):
                
                #if a label in the row is 1 in dataf
                if dataf.iloc[row, dataf.columns.get_loc(dfPlot.columns[col])] == 1:
                    
                    #add the sensors value to the corresponding column in dfPlot
                    dfPlot.iloc[row, dfPlot.columns.get_loc(dfPlot.columns[col])] = dataf.iloc[row, columnInd]
                    #dfPlot.iloc[row, dfPlot.columns.get]
                
                # If 0, print time stamps between rows 1000000 and 1280000
                else:
                    if 1016600 <= dataf['TimeDelta'][row] <= 1300000:
                        print("Selected Region: 1016600 ms to 1300000 ms")

        for col in range (1, dfPlot.shape[1]):
            plt.plot(dfPlot['TIME'], dfPlot[list(dfPlot)[col]], color='g')
        
        plt.gca().legend(loc = 'lower left')
        plt.title(column)
        plt.xlabel("Time")
        plt.ylabel("IMU Data")
        plt.xlim(left=1016600, right=1300000)

        #file_name = column
        #pdf_string = '.jpg'
        #file_name += pdf_string
        
        #plt.savefig(file_name)
        plt.show()
        
        return
# Select Floating Data to analyze
selectData(df_converted,'IMU M1')
selectData(df_converted,'IMU M2')
selectData(df_converted,'IMU M3')
Selected Region: 1016600 ms to 1300000 ms

png

Selected Region: 1016600 ms to 1300000 ms

png

Selected Region: 1016600 ms to 1300000 ms

png

Apply wave direction model to new data

# To store time elapsed between each measurement, and time offset from 0s
time_e_list = []
time_o_list = []

#Remove all nan instances in time:
time_array_nans = np.array(dropped_motion_df.loc[:,"Time"], dtype=float)
time_array = []
imuA1_array_nans = np.array(dropped_motion_df.loc[:,"IMU A1"], dtype=float)
imu_array_A1 = []
imuA2_array_nans = np.array(dropped_motion_df.loc[:,"IMU A2"], dtype=float)
imu_array_A2 = []
imuA3_array_nans = np.array(dropped_motion_df.loc[:,"IMU A3"], dtype=float)
imu_array_A3 = []
imuG1_array_nans = np.array(dropped_motion_df.loc[:,"IMU G1"], dtype=float)
imu_array_G1 = []
imuG2_array_nans = np.array(dropped_motion_df.loc[:,"IMU G2"], dtype=float)
imu_array_G2 = []
imuG3_array_nans = np.array(dropped_motion_df.loc[:,"IMU G3"], dtype=float)
imu_array_G3 = []
imuM1_array_nans = np.array(dropped_motion_df.loc[:,"IMU M1"], dtype=float)
imu_array_M1 = []
imuM2_array_nans = np.array(dropped_motion_df.loc[:,"IMU M2"], dtype=float)
imu_array_M2 = []
imuM3_array_nans = np.array(dropped_motion_df.loc[:,"IMU M3"], dtype=float)
imu_array_M3 = []


#Get all the times and imus where time, imu a1, imu a2, and imu a3 are NOT nan values:
for t,x,y,z,a,b,c,d,e,f in zip(time_array_nans, imuA1_array_nans, imuA2_array_nans, imuA3_array_nans, imuG1_array_nans, 
                              imuG2_array_nans, imuG3_array_nans, imuM1_array_nans, imuM2_array_nans, imuM3_array_nans):
    if (np.isnan(t)==0 and np.isnan(x)==0 and np.isnan(y)==0 and np.isnan(z)==0):
        time_array.append(t)
        imu_array_A1.append(x)
        imu_array_A2.append(y)
        imu_array_A3.append(z)
        imu_array_G1.append(a)
        imu_array_G2.append(b)
        imu_array_G3.append(c)
        imu_array_M1.append(d)
        imu_array_M2.append(e)
        imu_array_M3.append(f)

#for x in time_array:
#    print(x)
    
start_time = time_array[0]
time_len = len(time_array)
    
i = 0
while (i < time_len - 1):
    prev = time_array[i]
    after = time_array[i+1]
    offset = after - prev
    #if (np.isnan(offset)==0):
    time_o_list.append(offset)
    
    elapsed = time_array[i] - start_time
    #if (np.isnan(elapsed)==0):
    time_e_list.append(elapsed)
    
    i = i + 1

##Check to make sure there are no "nan" values:
i = 0
while (i < len(time_o_list)):
    if (np.isnan(time_o_list[i])):
        print("Error! Value at index: ", i, " is nan")
    i = i + 1

#Drop the last value from each of the imu lists to make it match the time list.
del(imu_array_A1[-1])
del(imu_array_A2[-1])
del(imu_array_A3[-1])
del(imu_array_G1[-1])
del(imu_array_G2[-1])
del(imu_array_G3[-1])
del(imu_array_M1[-1])
del(imu_array_M2[-1])
del(imu_array_M3[-1])
    
print(len(time_e_list))
print(len(time_o_list))
print(len(imu_array_A1))
print(len(imu_array_A2))
print(len(imu_array_A3))
print(len(imu_array_G1))
print(len(imu_array_G2))
print(len(imu_array_G3))
print(len(imu_array_M1))
print(len(imu_array_M2))
print(len(imu_array_M3))

CheckLength = len(time_e_list) + len(time_o_list) + len(imu_array_A1) + len(imu_array_A2) + len(imu_array_A3) + len(imu_array_G1) + len(imu_array_G2) + len(imu_array_G3) + len(imu_array_M1)+ len(imu_array_M2) + len(imu_array_M3)

if CheckLength//11 == len(time_e_list):
    print("All columns are matching!")
21644
21644
21644
21644
21644
21644
21644
21644
21644
21644
21644
All columns are matching!

Convert raw units to actual units (acc to [m/s^2]) and (time to [s])

#Raw acceleration constant 512 = 1g (accelerometer's measured force due to gravity)
g_const = 512

#Approximate measurement for gravity:
gravity = 9.80665

# Correct the IMU Acceleration columns into units of meters
def convert_acc_units(acc_array):
    ret_array = []
    for a in acc_array:
        #Acceleration is now in m/s^2, need to subtract gravity from vertical axis. (??)
        new_a = a / g_const * gravity
        ret_array.append(new_a)
    return ret_array

imu1_array_calib = convert_acc_units(imu_array_A1) #new units in m/s^2
imu2_array_calib = convert_acc_units(imu_array_A2) #new units in m/s^2
imu3_array_calib = convert_acc_units(imu_array_A3) #new units in m/s^2

# To check:
#for x,y in zip(imu2_array, imu_array_A2):
#   print(x,y)
    
def convert_time_units(time_array):
    ret_array = []
    for t in time_array:
        new_t = t * (10**(-3)) #converting units in milliseconds to seconds
        ret_array.append(new_t)
    return ret_array

# To check:
# for t in time_e_array:
#    print(t)
print("Done!")
Done!

Calculate and plot magnitude of acceleration on X plane

print("Graph of X Acceleration vs. Time")

plt.plot(time_e_array, imu1_array_calib)
plt.xlabel("Time (s)")
plt.ylabel("Acceleration-X (m/s^2)")
plt.show()
Graph of X Acceleration vs. Time

png

Center and Calibrate Magnetometer Data

# Offset variables help in recentering the magnetic data in order to define direction and use trig functions
M1_offset_var = 219.786
M2_offset_var = 180
M3_offset_var = 280

def calibrate_magn_data(magn_array, offset_value):
    ret_array = []
    for m in magn_array:
        new_m = m - offset_value
        ret_array.append(new_m)
    return ret_array

imuM1_array_calib = calibrate_magn_data(imu_array_M1, M1_offset_var)
imuM2_array_calib = calibrate_magn_data(imu_array_M2, M2_offset_var)
imuM3_array_calib = calibrate_magn_data(imu_array_M3, M3_offset_var)

# Check 
print(len(imuM1_array_calib))
print("Done.")
21644
Done.

Isolate values between 1016600 ms and 1300000 ms

lower_time = 1016600
upper_time = 1300000

# Create new arrays for Magnetometer values
imuM1_array = []
imuM2_array = []
imuM3_array = []

# Create new arrays for accelerometer values
imu1_array = []
imu2_array = []
imu3_array = []

new_time_e_list = []

# iterate through time_e_array
for i in range(0, len(time_e_list)):
    if lower_time <= time_e_list[i] <= upper_time:
        # Set new time offset
        new_time_e_list.append(time_e_list[i] - 1016600)
        
        # Set 3-D IMU values
        imuM1_array.append(imuM1_array_calib[i])
        imuM2_array.append(imuM2_array_calib[i])
        imuM3_array.append(imuM3_array_calib[i])
        imu1_array.append(imu1_array_calib[i])
        imu2_array.append(imu2_array_calib[i])
        imu3_array.append(imu3_array_calib[i])

# Convert time units to seconds
time_e_array = convert_time_units(new_time_e_list) #new units in seconds

# Check if all array lengths match
CheckLength = len(time_e_array) + len(imu1_array) + len(imu2_array) + len(imu3_array) + len(imuM1_array) + len(imuM2_array) + len(imuM3_array)

if CheckLength == 7*len(new_time_e_list):
    print("All columns are matching!")
    
print("Data Selected!")
All columns are matching!
Data Selected!

Set up 3xN arrays for Magnetometer and Accel values

# Create N x 3 arrays for functions that need them later on, such as Scikit Kinematics
magn_height = len(imuM1_array)
acc_height = len(imu1_array)

acc_array = np.zeros(shape=(acc_height,3))
magn_array = np.zeros(shape=(magn_height,3))

print("For Accelerometer: ")
for x in range(len(acc_array)):
    acc_array[x,0] = imu1_array[x]
    acc_array[x,1] = imu2_array[x]
    acc_array[x,2] = imu3_array[x]
print(acc_array)

print("\nFor Magnetometer: ")
for x in range(len(magn_array)):
    magn_array[x,0] = imuM1_array[x]
    magn_array[x,1] = imuM2_array[x]
    magn_array[x,2] = imuM3_array[x]

print(magn_array)
print("Done.")
For Accelerometer: 
[[ 0.68953008  9.42357773  2.43250889]
 [ 0.61291562 10.32379756  2.27927998]
 [ 0.84275898  9.84495723  2.03028301]
 ...
 [ 0.78529814  9.13627354  1.81959326]
 [-0.26815059  9.69172832  2.29843359]
 [ 1.09175596  9.44273135  2.77727393]]

For Magnetometer: 
[[-294.786 -361.    -107.   ]
 [-313.786 -360.     -94.   ]
 [-317.786 -352.     -88.   ]
 ...
 [-227.786 -312.    -350.   ]
 [-247.786 -316.    -332.   ]
 [-246.786 -321.    -343.   ]]
Done.

Conversion from fin-frame to board-frame

Orientation from here onwards will be from the board/surfers reference frame (yaw left = turning left)

x = -IMU1, y = -IMU3, z = -IMU2

# The new array for board reference frame will have the IMUs in columns according to X,Y,Z directions
print("For Accelerometer:")
board_acc = acc_array.copy()       # Reassign to the correct axes as stated above
temp_x_acc = board_acc[:,0] * (-1)
temp_y_acc = board_acc[:,1] * (-1)
temp_z_acc = board_acc[:,2] * (-1)
board_acc[:,0] = temp_x_acc     # X acceleration
board_acc[:,1] = temp_y_acc     # Y acceleration
board_acc[:,2] = temp_z_acc     # Z acceleration
print(board_acc)

print("\nFor Magnetometer:")
board_magn = magn_array.copy()
temp_x_magn = board_magn[:,0] * (-1)
temp_y_magn = board_magn[:,1] * (-1)
temp_z_magn = board_magn[:,2] * (-1)
board_magn[:,0] = temp_x_magn
board_magn[:,1] = temp_y_magn
board_magn[:,2] = temp_z_magn
print(board_magn)
print("Done.")
For Accelerometer:
[[ -0.68953008  -9.42357773  -2.43250889]
 [ -0.61291562 -10.32379756  -2.27927998]
 [ -0.84275898  -9.84495723  -2.03028301]
 ...
 [ -0.78529814  -9.13627354  -1.81959326]
 [  0.26815059  -9.69172832  -2.29843359]
 [ -1.09175596  -9.44273135  -2.77727393]]

For Magnetometer:
[[294.786 361.    107.   ]
 [313.786 360.     94.   ]
 [317.786 352.     88.   ]
 ...
 [227.786 312.    350.   ]
 [247.786 316.    332.   ]
 [246.786 321.    343.   ]]
Done.

Azimuth and altitude calculations

# Azimuth and Altitude LEGEND:
# Altitude is the angle between the ground and the vector 
# Azimuth is the angle going clockwise from 0 deg North:
# N - 0/360deg, E - 90deg, S - 180deg, W - 270deg

# This will get complicated (ie make cases or lots of if statements) when rotations about the heading become more prevalent
def azimuth(x,y,z):
    real_y = y * (-1) # This is to account for y 
    return (180/math.pi * math.atan2(real_y,x)) % 360

def altitude(x,y,z):
    h = math.hypot(y, x)
    return 180/math.pi * math.atan2(z,h)

def printAltAzi(alt, azi):
    print ("Alt:", alt, "\n", "Azi:",azi,"\n")
# These values are uncorrected values: still need to add or subtract 'declination'
#     (for AziMuth) and 'inclination' (for Altitude) correction values for geographical location

heading_altitude = board_magn[:,0].copy()
heading_azimuth = board_magn[:,0].copy()

i = 0     #iterator
#for i in range(len(M1_no_out)):
while i < len(heading_altitude):
    factor = 0;
    # Use acceleration values to calibrate magnetometer
    if (board_acc[i, 0] >= 0):
        factor = 1
    else:
        factor = -1
    
    heading_altitude[i] = altitude(board_magn[i,0], board_magn[i,1], board_magn[i,2])
    heading_azimuth[i] = azimuth(board_magn[i,0], board_magn[i,1], board_magn[i,2])
    heading_azimuth[i] = heading_azimuth[i] * factor
    
    #printAltAzi(heading_altitude[i],heading_azimuth[i])
    i += 1

#for t in range(len(time_e_array)):
    #printAltAzi(heading_altitude[t], heading_azimuth[t])

Plot polar azimuth and altitude

# Fixing random state for reproducibility
heading_alt_plot = plt.figure(figsize=(10,5))
alt_plot = heading_alt_plot.add_subplot(111)
alt_plot.plot(time_e_array, heading_altitude)
alt_plot.set_title("Altitude vs. Time")
alt_plot.set_xlabel("Time Elapsed [sec]")
alt_plot.set_ylabel("Altitude [deg]")
plt.show()

np.random.seed(19680801)

# Compute areas and colors
r = [i for i in range(0, len(board_magn))]
theta = heading_azimuth/360 * 2 * np.pi
area = 1

fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111, projection='polar')
c = ax.scatter(theta, r, c='red', s=area, cmap='hsv', alpha=1)

# Compute areas and colors
alt_r = [i for i in range(0, len(board_magn))]
alt_theta = heading_altitude/360 * 2 * np.pi
alt_area = 1
alt_colors = theta

fig2 = plt.figure(figsize=(10,10))
ax2 = fig2.add_subplot(111, projection='polar')
c2 = ax2.scatter(alt_theta, alt_r, c='blue', s=alt_area, cmap='hsv', alpha=1)

png

png

png

# Plot first 10 directional changes 
magnfig = plt.figure(figsize=(20,20))
magnaxi = magnfig.add_subplot(111, projection='3d')
magnaxi.scatter(board_magn[0,0], board_magn[0,1], board_magn[0,2], c='black', s=300, marker = "<")
magnaxi.scatter(board_magn[1:,0], board_magn[1:,1], board_magn[1:,2], c='black', s=10, marker = "o")
magnaxi.plot(board_magn[:,0], board_magn[:,1], board_magn[:,2], color='green')
magnaxi.set_xlabel("X Axis ->", fontsize=30)
magnaxi.set_ylabel("Y Axis ->", fontsize=30)
magnaxi.set_zlabel("Z Axis ->", fontsize=30)
plt.show()

png

Summarize results

# Plot Smartfin data
heading_azi_plot = plt.figure(figsize=(10,5))
azi_plot = heading_azi_plot.add_subplot(111)
azi_plot.plot(time_e_array, heading_azimuth)
azi_plot.set_title("Azimuth vs. Time")
azi_plot.set_xlabel("Time Elapsed[sec]")
azi_plot.set_ylabel("Azimuth [deg]")

print()
# Get buoy data from CDIP website
# Link: https://cdip.ucsd.edu/themes/?d2=p70:s:201&zoom=auto&pub_set=public&regions=california_south&tz=UTC&units=standard

png

# Calculate average heading using my own graph
total_sum = 0
for i in heading_azimuth:
    total_sum += i

my_average = total_sum/len(heading_azimuth)
expected_average = 282.41

print("My calculated average heading (deg) is:")
print(my_average)

heading_average = 360 + my_average

print("\nWhich is a [SW] heading of: ")
print(heading_average)
#print("\nThe expected heading (deg) is:")
#print(expected_average)

# Calculate error in findings
#error_percent = (my_average - expected_average) / expected_average
#print("\nThe percentage error in my model is:")
#print(error_percent)
My calculated average heading (deg) is:
-164.47835236359094

Which is a [SW] heading of: 
195.52164763640906

To get an accurate error estimate for this sample surf, must compare with buoy data from Nov 7 2018, which is currently unavailable.

Clone this wiki locally