Skip to content

Wave Direction

Howard (Luhao) Wang edited this page May 21, 2019 · 3 revisions

Method for Wave Direction

By Howard Wang

"The method I came up with to calculate and determine the direction of waves in the general surf region can be described simply as a physical analysis of the overall movement of the Smartfin, currently using buoy calibrated data for controlled behaviour. Basically, the movement of the Smartfin emulates the movement of the waves." - Howard Wang

Method 1 (Controlled)

Import all necessary python packages

# Howard Wang 05/14/19
# CSE 145: Embedded systems and design

# Main Database: https://surf.smartfin.org/

# Analyzing data from Buoy Calibration experiment to get wave direction.
# First, parse the data from the .CSV file containing ocean and wave motion data.
# This data comes from a controlled experiment (CE3), so we are assuming that 
# all of the vertical accelerations are contained in IMUA2.

# MATPLOTLIB
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.animation as animation

#from mpl_toolkits.basemap import Basemap

# DATAFRAMES
import pandas as pd
import numpy as np

# SCIPY
from scipy import stats
from scipy import constants
from scipy import signal #added
from scipy.interpolate import CubicSpline
from scipy.interpolate import interp1d
from scipy.integrate import simps
from scipy.integrate import cumtrapz
import pylab as pylab

# SYSTEM and CONVERSION TOOLS
import math
import abc
import sys
import csv
import io
import os
import datetime
import pytz
import re

# MODELING AND GRAPHS
import peakutils
import statsmodels.api as sm

# URL REQUESTS
import requests

# VECTORS AND GRAPHICS
import mpld3
import folium
# import cmocean
import skinematics as skin
from skinematics import quat, vector, misc, rotmat, imus, view
import pygame

# PLOTTING TOOLS
from plotly import tools 
import plotly.offline
import plotly.graph_objs as go

%matplotlib notebook
%matplotlib inline

print("Done!")
Done!

Target a specific ride (14888)

ride_ids = ['14888']
# 14743 - Motion Control July 10th
# 14750 - Magnetometer Control July 11th
# 14814 - Pool Displacement Control July 17th
# 14815 - Compass Orientation (Lying on Charger Side) July 19th
# 14816 - Orientation w Higher Sampling (Lying on Charger Side) July 20th
# 14827 - Pool Displacement Control w Higher Sampling (Jul 23)
# 14888 - First Buoy Calibration Experiment (July 30)
print("Done!")
Done!

Scrape motion and ocean csv data from smartfin database

#%% Fin ID scraper
# Input fin ID, get all ride IDs
# base URL to which we'll append given fin IDs
fin_url_base = 'http://surf.smartfin.org/fin/'

# Look for the following text in the HTML contents in fcn below
str_id_ride = 'rideId = \'' # backslash allows us to look for single quote
str_id_date = 'var date = \'' # backslash allows us to look for single quote

#%% Ride ID scraper
# Input ride ID, get ocean and motion CSVs
# Base URL to which we'll append given ride IDs
ride_url_base = 'https://surf.smartfin.org/ride/'

# Look for the following text in the HTML contents in fcn below
str_id_csv = 'img id="temperatureChart" class="chart" src="' 

def get_csv_from_ride_id(rid):
    # Build URL for each individual ride
    ride_url = ride_url_base+str(rid)
    print(ride_url)
    
    # Get contents of ride_url
    html_contents = requests.get(ride_url).text
    
    # Find CSV identifier 
    loc_csv_id = html_contents.find(str_id_csv)
    
    # Different based on whether user logged in with FB or Google
    offset_googleOAuth = [46, 114]
    offset_facebkOAuth = [46, 112]
    if html_contents[loc_csv_id+59] == 'f': # Facebook login
        off0 = offset_facebkOAuth[0]
        off1 = offset_facebkOAuth[1]
    else: # Google login
        off0 = offset_googleOAuth[0]
        off1 = offset_googleOAuth[1]
        
    csv_id_longstr = html_contents[loc_csv_id+off0:loc_csv_id+off1]
    
    # Stitch together full URL for CSV
    if ("media" in csv_id_longstr) & ("Calibration" not in html_contents): # other junk URLs can exist and break everything
        
        ocean_csv_url = 'https://surf.smartfin.org/'+csv_id_longstr+'Ocean.CSV'
        motion_csv_url = 'https://surf.smartfin.org/'+csv_id_longstr+'Motion.CSV'
        
        print(ocean_csv_url)
        # Go to ocean_csv_url and grab contents (theoretically, a CSV)
        oceanCSV = requests.get(ocean_csv_url).content
        ocean_df_small = pd.read_csv(io.StringIO(oceanCSV.decode('utf-8')))

        # Grab CSV from motion url
        motionCSV = requests.get(motion_csv_url).content
        motion_df_small = pd.read_csv(io.StringIO(motionCSV.decode('utf-8')))
        
        return ocean_df_small, motion_df_small

    else:
        ocean_df_small_resample = pd.DataFrame() # empty DF just so something is returned
        motion_df_small_resample = pd.DataFrame() 
        return ocean_df_small_resample, motion_df_small_resample

print("Done!")
Done!

Print out both dataframes

appended_ocean_list = [] # list of DataFrames from original CSVs
appended_motion_list = []
appended_multiIndex = [] # fin_id & ride_id used to identify each DataFrame

## Nested loops (for each fin ID, find all ride IDs, then build a DataFrame from all ride CSVs)
## (Here, ride IDS are either ocean or motion dataframes)
count_good_fins = 0
    
# Loop over ride_ids and find CSVs
for rid in ride_ids:
    try:
        new_ocean_df, new_motion_df = get_csv_from_ride_id(rid) # get given ride's CSV from its ride ID using function above
        #print(len(new_ocean_df))
        #print(len(new_motion_df))
        if not new_ocean_df.empty: # Calibration rides, for example
            # Append only if DF isn't empty. There may be a better way to control empty DFs which are created above
            appended_multiIndex.append(str(rid)) # build list to be multiIndex of future DataFrame
            appended_ocean_list.append(new_ocean_df)
            appended_motion_list.append(new_motion_df)
            print("Ride data has been uploaded.")
            #print("Ride: ", rid, "data has been uploaded.")
            count_good_fins += 1
        
    except: 
        print("Ride threw an exception!")
        #print("Ride ", rid, "threw an exception!")    

#%% Build the "Master" DataFrame

# appended_ocean_df.summary()
df_keys = tuple(appended_multiIndex) # keys gotta be a tuple, a list which data in it cannot be changed
ocean_df = pd.concat(appended_ocean_list, keys = df_keys, names=['ride_id'])
motion_df = pd.concat(appended_motion_list, keys = df_keys, names = ['ride_id'])

# Print motion and Ocean dataframes
print(motion_df)
print(ocean_df)
https://surf.smartfin.org/ride/14888
https://surf.smartfin.org/media/201807/google_117589279598321562176_000666D321BE_180730171718_Ocean.CSV
Ride data has been uploaded.
                                         UTC        Time  IMU A1  IMU A2  \
ride_id                                                                    
14888   0     2018-07-30T17:17:24.3320+00:00  2067196596   -34.0  -520.0   
        1     2018-07-30T17:17:24.3650+00:00  2067196629   -30.0  -517.0   
        2     2018-07-30T17:17:24.3990+00:00  2067196662   -28.0  -517.0   
        3     2018-07-30T17:17:24.4320+00:00  2067196695   -28.0  -518.0   
        4     2018-07-30T17:17:24.4650+00:00  2067196728   -30.0  -517.0   
        5     2018-07-30T17:17:24.4980+00:00  2067196761   -31.0  -518.0   
        6     2018-07-30T17:17:24.5310+00:00  2067196794   -33.0  -520.0   
        7     2018-07-30T17:17:24.5650+00:00  2067196828   -30.0  -519.0   
        8     2018-07-30T17:17:24.5970+00:00  2067196860   -30.0  -517.0   
        9     2018-07-30T17:17:24.6310+00:00  2067196894   -29.0  -517.0   
        10    2018-07-30T17:17:24.6630+00:00  2067196926   -30.0  -518.0   
        11    2018-07-30T17:17:24.6960+00:00  2067196959   -32.0  -520.0   
        12    2018-07-30T17:17:24.7300+00:00  2067196992   -32.0  -518.0   
        13    2018-07-30T17:17:24.7630+00:00  2067197025   -30.0  -517.0   
        14    2018-07-30T17:17:24.7960+00:00  2067197058   -28.0  -516.0   
        15    2018-07-30T17:17:24.8290+00:00  2067197091   -27.0  -516.0   
        16    2018-07-30T17:17:24.8620+00:00  2067197124   -31.0  -518.0   
        17    2018-07-30T17:17:24.8950+00:00  2067197157   -34.0  -518.0   
        18    2018-07-30T17:17:24.9290+00:00  2067197191   -33.0  -519.0   
        19    2018-07-30T17:17:24.9610+00:00  2067197223   -30.0  -517.0   
        20    2018-07-30T17:17:24.9950+00:00  2067197257   -27.0  -516.0   
        21    2018-07-30T17:17:25.0280+00:00  2067197290   -28.0  -516.0   
        22    2018-07-30T17:17:25.0620+00:00  2067197323     7.0  -516.0   
        23    2018-07-30T17:17:25.0950+00:00  2067197356   -50.0  -518.0   
        24    2018-07-30T17:17:25.1280+00:00  2067197389   -38.0  -517.0   
        25    2018-07-30T17:17:25.1610+00:00  2067197422   -39.0  -516.0   
        26    2018-07-30T17:17:25.1940+00:00  2067197455   -29.0  -517.0   
        27    2018-07-30T17:17:25.2280+00:00  2067197489   -29.0  -517.0   
        28    2018-07-30T17:17:25.2600+00:00  2067197521   -29.0  -517.0   
        29    2018-07-30T17:17:25.2930+00:00  2067197554   -30.0  -517.0   
...                                      ...         ...     ...     ...   
        7559  2018-07-30T17:30:50.4950+00:00  2068000375   -58.0  -553.0   
        7560  2018-07-30T17:30:50.6940+00:00  2068000574   -65.0  -549.0   
        7561  2018-07-30T17:30:50.8930+00:00  2068000772   -73.0  -539.0   
        7562  2018-07-30T17:30:51.0920+00:00  2068000971   -73.0  -530.0   
        7563  2018-07-30T17:30:51.2910+00:00  2068001169   -76.0  -522.0   
        7564  2018-07-30T17:30:51.4910+00:00  2068001368   -78.0  -510.0   
        7565  2018-07-30T17:30:51.6900+00:00  2068001567   -73.0  -497.0   
        7566  2018-07-30T17:30:51.8890+00:00  2068001765   -73.0  -494.0   
        7567  2018-07-30T17:30:52.0980+00:00  2068001974   -64.0  -480.0   
        7568  2018-07-30T17:30:52.2970+00:00  2068002172   -57.0  -480.0   
        7569  2018-07-30T17:30:52.4960+00:00  2068002371   -50.0  -477.0   
        7570  2018-07-30T17:30:52.6960+00:00  2068002570   -40.0  -472.0   
        7571  2018-07-30T17:30:52.8950+00:00  2068002768   -32.0  -469.0   
        7572  2018-07-30T17:30:53.0930+00:00  2068002966   -20.0  -469.0   
        7573  2018-07-30T17:30:53.3030+00:00  2068003175   -14.0  -472.0   
        7574  2018-07-30T17:30:53.5020+00:00  2068003374    -4.0  -475.0   
        7575  2018-07-30T17:30:53.7020+00:00  2068003573     3.0  -480.0   
        7576  2018-07-30T17:30:53.9010+00:00  2068003771     8.0  -491.0   
        7577  2018-07-30T17:30:54.1000+00:00  2068003970    12.0  -498.0   
        7578  2018-07-30T17:30:54.3000+00:00  2068004169    14.0  -509.0   
        7579  2018-07-30T17:30:54.4980+00:00  2068004367    17.0  -514.0   
        7580  2018-07-30T17:30:54.6980+00:00  2068004566    16.0  -523.0   
        7581  2018-07-30T17:30:54.9080+00:00  2068004775    14.0  -530.0   
        7582  2018-07-30T17:30:54.9970+00:00  2068004864     NaN     NaN   
        7583  2018-07-30T17:31:00.4840+00:00  2068010335     NaN     NaN   
        7584  2018-07-30T17:31:05.5020+00:00  2068015338     NaN     NaN   
        7585  2018-07-30T17:31:10.9830+00:00  2068020803     NaN     NaN   
        7586  2018-07-30T17:31:16.0010+00:00  2068025806     NaN     NaN   
        7587  2018-07-30T17:31:21.4850+00:00  2068031274     NaN     NaN   
        7588  2018-07-30T17:31:26.5000+00:00  2068036274     NaN     NaN   

              IMU A3  IMU G1  IMU G2  IMU G3  IMU M1  IMU M2  IMU M3  \
ride_id                                                                
14888   0      -48.0    82.0   -19.0    12.0   208.0   394.0   438.0   
        1      -57.0    32.0   -14.0     9.0   220.0   400.0   438.0   
        2      -59.0    -7.0   -11.0     6.0   218.0   398.0   430.0   
        3      -62.0   -27.0    -9.0     5.0   210.0   400.0   428.0   
        4      -62.0    64.0   -13.0     9.0   212.0   394.0   426.0   
        5      -54.0   157.0   -24.0    17.0   215.0   399.0   433.0   
        6      -41.0    29.0   -14.0     9.0   220.0   400.0   432.0   
        7      -46.0  -101.0    -3.0     2.0   216.0   406.0   432.0   
        8      -55.0  -121.0    -1.0     1.0   213.0   401.0   429.0   
        9      -63.0   -26.0    -8.0     6.0   218.0   396.0   428.0   
        10     -57.0    -7.0   -11.0     5.0   209.0   407.0   427.0   
        11     -54.0    -3.0   -11.0     6.0   212.0   398.0   440.0   
        12     -57.0   -22.0    -8.0     7.0   220.0   400.0   432.0   
        13     -60.0   -27.0    -9.0     6.0   208.0   400.0   434.0   
        14     -58.0    11.0   -12.0     9.0   216.0   396.0   430.0   
        15     -58.0    -4.0   -10.0     6.0   213.0   403.0   437.0   
        16     -55.0   -32.0    -8.0     4.0   211.0   405.0   441.0   
        17     -62.0   -71.0    -7.0     3.0   209.0   403.0   437.0   
        18     -62.0   -32.0    -9.0     5.0   203.0   395.0   433.0   
        19     -66.0   -68.0    14.0     5.0   213.0   395.0   441.0   
        20     -66.0   -97.0    25.0     3.0   218.0   392.0   436.0   
        21     -68.0   -60.0    10.0     6.0   216.0   392.0   440.0   
        22     -71.0   -24.0     4.0     5.0   217.0   397.0   441.0   
        23     -73.0   -47.0    13.0     5.0   217.0   399.0   445.0   
        24     -72.0   -43.0     6.0     8.0   210.0   396.0   442.0   
        25     -74.0   -29.0    -1.0     7.0   219.0   389.0   441.0   
        26     -73.0    -7.0   -11.0     6.0   214.0   396.0   448.0   
        27     -75.0   -53.0     9.0     6.0   210.0   402.0   440.0   
        28     -77.0   -40.0     6.0     7.0   208.0   392.0   442.0   
        29     -76.0   -11.0    -9.0     5.0   224.0   386.0   440.0   
...              ...     ...     ...     ...     ...     ...     ...   
        7559   -65.0    -9.0   -10.0     5.0   199.0   405.0   439.0   
        7560   -66.0    -7.0   -10.0     5.0   199.0   409.0   459.0   
        7561   -65.0    -8.0   -10.0     4.0   201.0   395.0   469.0   
        7562   -63.0    -9.0    -9.0     3.0   205.0   387.0   467.0   
        7563   -61.0    -8.0    -9.0     4.0   197.0   381.0   465.0   
        7564   -63.0    -8.0    -9.0     4.0   209.0   377.0   457.0   
        7565   -65.0    -9.0   -10.0     5.0   201.0   383.0   445.0   
        7566   -62.0    -8.0    -9.0     5.0   211.0   377.0   441.0   
        7567   -60.0    -7.0    -9.0     5.0   208.0   384.0   438.0   
        7568   -57.0    -6.0    -9.0     6.0   204.0   374.0   434.0   
        7569   -62.0    -7.0   -10.0     5.0   207.0   385.0   435.0   
        7570   -56.0    -6.0   -10.0     6.0   210.0   396.0   432.0   
        7571   -56.0    -6.0   -11.0     4.0   203.0   397.0   429.0   
        7572   -56.0    -7.0   -11.0     5.0   196.0   396.0   438.0   
        7573   -56.0    -6.0   -11.0     8.0   205.0   389.0   433.0   
        7574   -58.0    -7.0   -12.0     5.0   211.0   397.0   429.0   
        7575   -57.0    -6.0   -12.0     4.0   201.0   395.0   429.0   
        7576   -58.0    -6.0   -12.0     4.0   210.0   392.0   432.0   
        7577   -57.0    -6.0   -12.0     5.0   216.0   402.0   426.0   
        7578   -55.0    -6.0   -13.0     7.0   208.0   394.0   424.0   
        7579   -59.0    -7.0   -12.0     7.0   207.0   389.0   433.0   
        7580   -56.0    -8.0   -11.0     6.0   213.0   395.0   429.0   
        7581   -60.0    -8.0   -13.0     5.0   212.0   400.0   424.0   
        7582     NaN     NaN     NaN     NaN     NaN     NaN     NaN   
        7583     NaN     NaN     NaN     NaN     NaN     NaN     NaN   
        7584     NaN     NaN     NaN     NaN     NaN     NaN     NaN   
        7585     NaN     NaN     NaN     NaN     NaN     NaN     NaN   
        7586     NaN     NaN     NaN     NaN     NaN     NaN     NaN   
        7587     NaN     NaN     NaN     NaN     NaN     NaN     NaN   
        7588     NaN     NaN     NaN     NaN     NaN     NaN     NaN   

               Latitude   Longitude  
ride_id                              
14888   0           NaN         NaN  
        1           NaN         NaN  
        2           NaN         NaN  
        3           NaN         NaN  
        4           NaN         NaN  
        5           NaN         NaN  
        6           NaN         NaN  
        7           NaN         NaN  
        8           NaN         NaN  
        9           NaN         NaN  
        10          NaN         NaN  
        11          NaN         NaN  
        12          NaN         NaN  
        13          NaN         NaN  
        14          NaN         NaN  
        15          NaN         NaN  
        16          NaN         NaN  
        17          NaN         NaN  
        18          NaN         NaN  
        19          NaN         NaN  
        20          NaN         NaN  
        21          NaN         NaN  
        22          NaN         NaN  
        23          NaN         NaN  
        24          NaN         NaN  
        25          NaN         NaN  
        26          NaN         NaN  
        27          NaN         NaN  
        28          NaN         NaN  
        29          NaN         NaN  
...                 ...         ...  
        7559        NaN         NaN  
        7560        NaN         NaN  
        7561        NaN         NaN  
        7562        NaN         NaN  
        7563        NaN         NaN  
        7564        NaN         NaN  
        7565        NaN         NaN  
        7566        NaN         NaN  
        7567        NaN         NaN  
        7568        NaN         NaN  
        7569        NaN         NaN  
        7570        NaN         NaN  
        7571        NaN         NaN  
        7572        NaN         NaN  
        7573        NaN         NaN  
        7574        NaN         NaN  
        7575        NaN         NaN  
        7576        NaN         NaN  
        7577        NaN         NaN  
        7578        NaN         NaN  
        7579        NaN         NaN  
        7580        NaN         NaN  
        7581        NaN         NaN  
        7582  3286943.0 -11725208.0  
        7583  3286942.0 -11725208.0  
        7584  3286941.0 -11725207.0  
        7585  3286941.0 -11725206.0  
        7586  3286941.0 -11725206.0  
        7587  3286942.0 -11725206.0  
        7588  3286943.0 -11725207.0  

[7589 rows x 13 columns]
                                        UTC        Time  Temperature 1  \
ride_id                                                                  
14888   0    2018-07-30T17:17:23.8620+00:00  2067196127            463   
        1    2018-07-30T17:17:29.9020+00:00  2067202149            464   
        2    2018-07-30T17:17:35.9400+00:00  2067208169            464   
        3    2018-07-30T17:17:41.9790+00:00  2067214190            464   
        4    2018-07-30T17:17:48.0180+00:00  2067220212            464   
        5    2018-07-30T17:17:54.0550+00:00  2067226231            464   
        6    2018-07-30T17:18:00.0930+00:00  2067232251            464   
        7    2018-07-30T17:18:06.1310+00:00  2067238271            464   
        8    2018-07-30T17:18:12.1690+00:00  2067244291            464   
        9    2018-07-30T17:18:18.2070+00:00  2067250311            464   
        10   2018-07-30T17:18:24.2440+00:00  2067256331            465   
        11   2018-07-30T17:18:30.2830+00:00  2067262352            465   
        12   2018-07-30T17:18:36.3230+00:00  2067268374            465   
        13   2018-07-30T17:18:42.3610+00:00  2067274394            465   
        14   2018-07-30T17:18:48.3980+00:00  2067280413            465   
        15   2018-07-30T17:18:54.4350+00:00  2067286432            466   
        16   2018-07-30T17:19:00.4730+00:00  2067292452            466   
        17   2018-07-30T17:19:06.5100+00:00  2067298472            466   
        18   2018-07-30T17:19:12.5480+00:00  2067304492            465   
        19   2018-07-30T17:19:18.5890+00:00  2067310515            465   
        20   2018-07-30T17:19:24.6280+00:00  2067316536            466   
        21   2018-07-30T17:19:30.6670+00:00  2067322557            466   
        22   2018-07-30T17:19:36.7050+00:00  2067328577            466   
        23   2018-07-30T17:19:42.7430+00:00  2067334597            467   
        24   2018-07-30T17:19:48.7800+00:00  2067340617            467   
        25   2018-07-30T17:19:54.8210+00:00  2067346640            467   
        26   2018-07-30T17:20:00.8600+00:00  2067352661            468   
        27   2018-07-30T17:20:06.8980+00:00  2067358681            468   
        28   2018-07-30T17:20:12.9350+00:00  2067364700            468   
        29   2018-07-30T17:20:18.9740+00:00  2067370721            468   
...                                     ...         ...            ...   
        110  2018-07-30T17:28:28.0700+00:00  2067858371            465   
        111  2018-07-30T17:28:34.1090+00:00  2067864393            465   
        112  2018-07-30T17:28:40.1460+00:00  2067870412            465   
        113  2018-07-30T17:28:46.1850+00:00  2067876433            464   
        114  2018-07-30T17:28:52.2230+00:00  2067882453            464   
        115  2018-07-30T17:28:58.2610+00:00  2067888473            464   
        116  2018-07-30T17:29:04.3000+00:00  2067894494            464   
        117  2018-07-30T17:29:10.3380+00:00  2067900515            465   
        118  2018-07-30T17:29:16.3760+00:00  2067906535            464   
        119  2018-07-30T17:29:22.4140+00:00  2067912555            465   
        120  2018-07-30T17:29:28.4510+00:00  2067918574            464   
        121  2018-07-30T17:29:34.4900+00:00  2067924595            464   
        122  2018-07-30T17:29:40.5290+00:00  2067930616            465   
        123  2018-07-30T17:29:46.5680+00:00  2067936637            464   
        124  2018-07-30T17:29:52.6040+00:00  2067942656            464   
        125  2018-07-30T17:29:58.6410+00:00  2067948675            464   
        126  2018-07-30T17:30:04.6800+00:00  2067954696            464   
        127  2018-07-30T17:30:10.7180+00:00  2067960716            464   
        128  2018-07-30T17:30:16.7560+00:00  2067966736            464   
        129  2018-07-30T17:30:22.7940+00:00  2067972756            464   
        130  2018-07-30T17:30:28.8350+00:00  2067978779            464   
        131  2018-07-30T17:30:34.8720+00:00  2067984799            464   
        132  2018-07-30T17:30:40.9120+00:00  2067990821            465   
        133  2018-07-30T17:30:46.9500+00:00  2067996841            465   
        134  2018-07-30T17:30:52.9890+00:00  2068002862            465   
        135  2018-07-30T17:30:59.0290+00:00  2068008884            465   
        136  2018-07-30T17:31:05.0680+00:00  2068014905            465   
        137  2018-07-30T17:31:11.1050+00:00  2068020925            465   
        138  2018-07-30T17:31:17.1430+00:00  2068026945            465   
        139  2018-07-30T17:31:23.1810+00:00  2068032965            465   

             Calibrated Temperature 1  Temperature 1 Stable  Temperature 2  \
ride_id                                                                      
14888   0                      28.938                 False           7189   
        1                      29.000                 False           7307   
        2                      29.000                 False           7284   
        3                      29.000                 False           7276   
        4                      29.000                 False           7268   
        5                      29.000                 False           7265   
        6                      29.000                 False           7256   
        7                      29.000                 False           7256   
        8                      29.000                 False           7253   
        9                      29.000                 False           7251   
        10                     29.062                 False           7249   
        11                     29.062                 False           7287   
        12                     29.062                 False           7339   
        13                     29.062                 False           7359   
        14                     29.062                 False           7358   
        15                     29.125                 False           7347   
        16                     29.125                 False           7330   
        17                     29.125                 False           7303   
        18                     29.062                 False           7295   
        19                     29.062                 False           7286   
        20                     29.125                 False           7291   
        21                     29.125                 False           7288   
        22                     29.125                 False           7355   
        23                     29.188                 False           7414   
        24                     29.188                 False           7414   
        25                     29.188                 False           7416   
        26                     29.250                 False           7416   
        27                     29.250                 False           7437   
        28                     29.250                 False           7501   
        29                     29.250                 False           7489   
...                               ...                   ...            ...   
        110                    29.062                 False           7095   
        111                    29.062                 False           7087   
        112                    29.062                 False           7082   
        113                    29.000                 False           7080   
        114                    29.000                 False           7079   
        115                    29.000                 False           7066   
        116                    29.000                 False           7069   
        117                    29.062                 False           7075   
        118                    29.000                 False           7073   
        119                    29.062                 False           7065   
        120                    29.000                 False           7065   
        121                    29.000                 False           7067   
        122                    29.062                 False           7062   
        123                    29.000                 False           7054   
        124                    29.000                 False           7059   
        125                    29.000                 False           7062   
        126                    29.000                 False           7065   
        127                    29.000                 False           7073   
        128                    29.000                 False           7075   
        129                    29.000                 False           7078   
        130                    29.000                 False           7082   
        131                    29.000                 False           7094   
        132                    29.062                 False           7093   
        133                    29.062                 False           7099   
        134                    29.062                 False           7103   
        135                    29.062                 False           7108   
        136                    29.062                 False           7102   
        137                    29.062                 False           7100   
        138                    29.062                 False           7096   
        139                    29.062                 False           7099   

             Calibrated Temperature 2  Temperature 2 Stable  salinity  \
ride_id                                                                 
14888   0                      28.271                 False       NaN   
        1                      28.733                 False       NaN   
        2                      28.643                 False       NaN   
        3                      28.612                 False       NaN   
        4                      28.580                 False       NaN   
        5                      28.569                 False       NaN   
        6                      28.533                 False       NaN   
        7                      28.533                 False       NaN   
        8                      28.522                 False       NaN   
        9                      28.514                 False       NaN   
        10                     28.506                 False       NaN   
        11                     28.655                 False       NaN   
        12                     28.859                 False       NaN   
        13                     28.937                 False       NaN   
        14                     28.933                 False       NaN   
        15                     28.890                 False       NaN   
        16                     28.824                 False       NaN   
        17                     28.718                 False       NaN   
        18                     28.686                 False       NaN   
        19                     28.651                 False       NaN   
        20                     28.671                 False       NaN   
        21                     28.659                 False       NaN   
        22                     28.922                 False       NaN   
        23                     29.153                 False       NaN   
        24                     29.153                 False       NaN   
        25                     29.161                 False       NaN   
        26                     29.161                 False       NaN   
        27                     29.243                 False       NaN   
        28                     29.494                 False       NaN   
        29                     29.447                 False       NaN   
...                               ...                   ...       ...   
        110                    27.902                 False       NaN   
        111                    27.871                 False       NaN   
        112                    27.851                 False       NaN   
        113                    27.843                 False       NaN   
        114                    27.839                 False       NaN   
        115                    27.788                 False       NaN   
        116                    27.800                 False       NaN   
        117                    27.824                 False       NaN   
        118                    27.816                 False       NaN   
        119                    27.784                 False       NaN   
        120                    27.784                 False       NaN   
        121                    27.792                 False       NaN   
        122                    27.773                 False       NaN   
        123                    27.741                 False       NaN   
        124                    27.761                 False       NaN   
        125                    27.773                 False       NaN   
        126                    27.784                 False       NaN   
        127                    27.816                 False       NaN   
        128                    27.824                 False       NaN   
        129                    27.835                 False       NaN   
        130                    27.851                 False       NaN   
        131                    27.898                 False       NaN   
        132                    27.894                 False       NaN   
        133                    27.918                 False       NaN   
        134                    27.933                 False       NaN   
        135                    27.953                 False       NaN   
        136                    27.930                 False       NaN   
        137                    27.922                 False       NaN   
        138                    27.906                 False       NaN   
        139                    27.918                 False       NaN   

             Calibrated Salinity  Salinity Stable  pH  Calibrated pH  \
ride_id                                                                
14888   0                    NaN              NaN NaN            NaN   
        1                    NaN              NaN NaN            NaN   
        2                    NaN              NaN NaN            NaN   
        3                    NaN              NaN NaN            NaN   
        4                    NaN              NaN NaN            NaN   
        5                    NaN              NaN NaN            NaN   
        6                    NaN              NaN NaN            NaN   
        7                    NaN              NaN NaN            NaN   
        8                    NaN              NaN NaN            NaN   
        9                    NaN              NaN NaN            NaN   
        10                   NaN              NaN NaN            NaN   
        11                   NaN              NaN NaN            NaN   
        12                   NaN              NaN NaN            NaN   
        13                   NaN              NaN NaN            NaN   
        14                   NaN              NaN NaN            NaN   
        15                   NaN              NaN NaN            NaN   
        16                   NaN              NaN NaN            NaN   
        17                   NaN              NaN NaN            NaN   
        18                   NaN              NaN NaN            NaN   
        19                   NaN              NaN NaN            NaN   
        20                   NaN              NaN NaN            NaN   
        21                   NaN              NaN NaN            NaN   
        22                   NaN              NaN NaN            NaN   
        23                   NaN              NaN NaN            NaN   
        24                   NaN              NaN NaN            NaN   
        25                   NaN              NaN NaN            NaN   
        26                   NaN              NaN NaN            NaN   
        27                   NaN              NaN NaN            NaN   
        28                   NaN              NaN NaN            NaN   
        29                   NaN              NaN NaN            NaN   
...                          ...              ...  ..            ...   
        110                  NaN              NaN NaN            NaN   
        111                  NaN              NaN NaN            NaN   
        112                  NaN              NaN NaN            NaN   
        113                  NaN              NaN NaN            NaN   
        114                  NaN              NaN NaN            NaN   
        115                  NaN              NaN NaN            NaN   
        116                  NaN              NaN NaN            NaN   
        117                  NaN              NaN NaN            NaN   
        118                  NaN              NaN NaN            NaN   
        119                  NaN              NaN NaN            NaN   
        120                  NaN              NaN NaN            NaN   
        121                  NaN              NaN NaN            NaN   
        122                  NaN              NaN NaN            NaN   
        123                  NaN              NaN NaN            NaN   
        124                  NaN              NaN NaN            NaN   
        125                  NaN              NaN NaN            NaN   
        126                  NaN              NaN NaN            NaN   
        127                  NaN              NaN NaN            NaN   
        128                  NaN              NaN NaN            NaN   
        129                  NaN              NaN NaN            NaN   
        130                  NaN              NaN NaN            NaN   
        131                  NaN              NaN NaN            NaN   
        132                  NaN              NaN NaN            NaN   
        133                  NaN              NaN NaN            NaN   
        134                  NaN              NaN NaN            NaN   
        135                  NaN              NaN NaN            NaN   
        136                  NaN              NaN NaN            NaN   
        137                  NaN              NaN NaN            NaN   
        138                  NaN              NaN NaN            NaN   
        139                  NaN              NaN NaN            NaN   

             pH Stable  
ride_id                 
14888   0          NaN  
        1          NaN  
        2          NaN  
        3          NaN  
        4          NaN  
        5          NaN  
        6          NaN  
        7          NaN  
        8          NaN  
        9          NaN  
        10         NaN  
        11         NaN  
        12         NaN  
        13         NaN  
        14         NaN  
        15         NaN  
        16         NaN  
        17         NaN  
        18         NaN  
        19         NaN  
        20         NaN  
        21         NaN  
        22         NaN  
        23         NaN  
        24         NaN  
        25         NaN  
        26         NaN  
        27         NaN  
        28         NaN  
        29         NaN  
...                ...  
        110        NaN  
        111        NaN  
        112        NaN  
        113        NaN  
        114        NaN  
        115        NaN  
        116        NaN  
        117        NaN  
        118        NaN  
        119        NaN  
        120        NaN  
        121        NaN  
        122        NaN  
        123        NaN  
        124        NaN  
        125        NaN  
        126        NaN  
        127        NaN  
        128        NaN  
        129        NaN  
        130        NaN  
        131        NaN  
        132        NaN  
        133        NaN  
        134        NaN  
        135        NaN  
        136        NaN  
        137        NaN  
        138        NaN  
        139        NaN  

[140 rows x 14 columns]

Make copy of motion data

#print(motion_df)

saved_copy_motion_df = motion_df.copy(deep=True) #make a copy of the dataframe with raw data

print(saved_copy_motion_df)
                                         UTC        Time  IMU A1  IMU A2  \
ride_id                                                                    
14888   0     2018-07-30T17:17:24.3320+00:00  2067196596   -34.0  -520.0   
        1     2018-07-30T17:17:24.3650+00:00  2067196629   -30.0  -517.0   
        2     2018-07-30T17:17:24.3990+00:00  2067196662   -28.0  -517.0   
        3     2018-07-30T17:17:24.4320+00:00  2067196695   -28.0  -518.0   
        4     2018-07-30T17:17:24.4650+00:00  2067196728   -30.0  -517.0   
        5     2018-07-30T17:17:24.4980+00:00  2067196761   -31.0  -518.0   
        6     2018-07-30T17:17:24.5310+00:00  2067196794   -33.0  -520.0   
        7     2018-07-30T17:17:24.5650+00:00  2067196828   -30.0  -519.0   
        8     2018-07-30T17:17:24.5970+00:00  2067196860   -30.0  -517.0   
        9     2018-07-30T17:17:24.6310+00:00  2067196894   -29.0  -517.0   
        10    2018-07-30T17:17:24.6630+00:00  2067196926   -30.0  -518.0   
        11    2018-07-30T17:17:24.6960+00:00  2067196959   -32.0  -520.0   
        12    2018-07-30T17:17:24.7300+00:00  2067196992   -32.0  -518.0   
        13    2018-07-30T17:17:24.7630+00:00  2067197025   -30.0  -517.0   
        14    2018-07-30T17:17:24.7960+00:00  2067197058   -28.0  -516.0   
        15    2018-07-30T17:17:24.8290+00:00  2067197091   -27.0  -516.0   
        16    2018-07-30T17:17:24.8620+00:00  2067197124   -31.0  -518.0   
        17    2018-07-30T17:17:24.8950+00:00  2067197157   -34.0  -518.0   
        18    2018-07-30T17:17:24.9290+00:00  2067197191   -33.0  -519.0   
        19    2018-07-30T17:17:24.9610+00:00  2067197223   -30.0  -517.0   
        20    2018-07-30T17:17:24.9950+00:00  2067197257   -27.0  -516.0   
        21    2018-07-30T17:17:25.0280+00:00  2067197290   -28.0  -516.0   
        22    2018-07-30T17:17:25.0620+00:00  2067197323     7.0  -516.0   
        23    2018-07-30T17:17:25.0950+00:00  2067197356   -50.0  -518.0   
        24    2018-07-30T17:17:25.1280+00:00  2067197389   -38.0  -517.0   
        25    2018-07-30T17:17:25.1610+00:00  2067197422   -39.0  -516.0   
        26    2018-07-30T17:17:25.1940+00:00  2067197455   -29.0  -517.0   
        27    2018-07-30T17:17:25.2280+00:00  2067197489   -29.0  -517.0   
        28    2018-07-30T17:17:25.2600+00:00  2067197521   -29.0  -517.0   
        29    2018-07-30T17:17:25.2930+00:00  2067197554   -30.0  -517.0   
...                                      ...         ...     ...     ...   
        7559  2018-07-30T17:30:50.4950+00:00  2068000375   -58.0  -553.0   
        7560  2018-07-30T17:30:50.6940+00:00  2068000574   -65.0  -549.0   
        7561  2018-07-30T17:30:50.8930+00:00  2068000772   -73.0  -539.0   
        7562  2018-07-30T17:30:51.0920+00:00  2068000971   -73.0  -530.0   
        7563  2018-07-30T17:30:51.2910+00:00  2068001169   -76.0  -522.0   
        7564  2018-07-30T17:30:51.4910+00:00  2068001368   -78.0  -510.0   
        7565  2018-07-30T17:30:51.6900+00:00  2068001567   -73.0  -497.0   
        7566  2018-07-30T17:30:51.8890+00:00  2068001765   -73.0  -494.0   
        7567  2018-07-30T17:30:52.0980+00:00  2068001974   -64.0  -480.0   
        7568  2018-07-30T17:30:52.2970+00:00  2068002172   -57.0  -480.0   
        7569  2018-07-30T17:30:52.4960+00:00  2068002371   -50.0  -477.0   
        7570  2018-07-30T17:30:52.6960+00:00  2068002570   -40.0  -472.0   
        7571  2018-07-30T17:30:52.8950+00:00  2068002768   -32.0  -469.0   
        7572  2018-07-30T17:30:53.0930+00:00  2068002966   -20.0  -469.0   
        7573  2018-07-30T17:30:53.3030+00:00  2068003175   -14.0  -472.0   
        7574  2018-07-30T17:30:53.5020+00:00  2068003374    -4.0  -475.0   
        7575  2018-07-30T17:30:53.7020+00:00  2068003573     3.0  -480.0   
        7576  2018-07-30T17:30:53.9010+00:00  2068003771     8.0  -491.0   
        7577  2018-07-30T17:30:54.1000+00:00  2068003970    12.0  -498.0   
        7578  2018-07-30T17:30:54.3000+00:00  2068004169    14.0  -509.0   
        7579  2018-07-30T17:30:54.4980+00:00  2068004367    17.0  -514.0   
        7580  2018-07-30T17:30:54.6980+00:00  2068004566    16.0  -523.0   
        7581  2018-07-30T17:30:54.9080+00:00  2068004775    14.0  -530.0   
        7582  2018-07-30T17:30:54.9970+00:00  2068004864     NaN     NaN   
        7583  2018-07-30T17:31:00.4840+00:00  2068010335     NaN     NaN   
        7584  2018-07-30T17:31:05.5020+00:00  2068015338     NaN     NaN   
        7585  2018-07-30T17:31:10.9830+00:00  2068020803     NaN     NaN   
        7586  2018-07-30T17:31:16.0010+00:00  2068025806     NaN     NaN   
        7587  2018-07-30T17:31:21.4850+00:00  2068031274     NaN     NaN   
        7588  2018-07-30T17:31:26.5000+00:00  2068036274     NaN     NaN   

              IMU A3  IMU G1  IMU G2  IMU G3  IMU M1  IMU M2  IMU M3  \
ride_id                                                                
14888   0      -48.0    82.0   -19.0    12.0   208.0   394.0   438.0   
        1      -57.0    32.0   -14.0     9.0   220.0   400.0   438.0   
        2      -59.0    -7.0   -11.0     6.0   218.0   398.0   430.0   
        3      -62.0   -27.0    -9.0     5.0   210.0   400.0   428.0   
        4      -62.0    64.0   -13.0     9.0   212.0   394.0   426.0   
        5      -54.0   157.0   -24.0    17.0   215.0   399.0   433.0   
        6      -41.0    29.0   -14.0     9.0   220.0   400.0   432.0   
        7      -46.0  -101.0    -3.0     2.0   216.0   406.0   432.0   
        8      -55.0  -121.0    -1.0     1.0   213.0   401.0   429.0   
        9      -63.0   -26.0    -8.0     6.0   218.0   396.0   428.0   
        10     -57.0    -7.0   -11.0     5.0   209.0   407.0   427.0   
        11     -54.0    -3.0   -11.0     6.0   212.0   398.0   440.0   
        12     -57.0   -22.0    -8.0     7.0   220.0   400.0   432.0   
        13     -60.0   -27.0    -9.0     6.0   208.0   400.0   434.0   
        14     -58.0    11.0   -12.0     9.0   216.0   396.0   430.0   
        15     -58.0    -4.0   -10.0     6.0   213.0   403.0   437.0   
        16     -55.0   -32.0    -8.0     4.0   211.0   405.0   441.0   
        17     -62.0   -71.0    -7.0     3.0   209.0   403.0   437.0   
        18     -62.0   -32.0    -9.0     5.0   203.0   395.0   433.0   
        19     -66.0   -68.0    14.0     5.0   213.0   395.0   441.0   
        20     -66.0   -97.0    25.0     3.0   218.0   392.0   436.0   
        21     -68.0   -60.0    10.0     6.0   216.0   392.0   440.0   
        22     -71.0   -24.0     4.0     5.0   217.0   397.0   441.0   
        23     -73.0   -47.0    13.0     5.0   217.0   399.0   445.0   
        24     -72.0   -43.0     6.0     8.0   210.0   396.0   442.0   
        25     -74.0   -29.0    -1.0     7.0   219.0   389.0   441.0   
        26     -73.0    -7.0   -11.0     6.0   214.0   396.0   448.0   
        27     -75.0   -53.0     9.0     6.0   210.0   402.0   440.0   
        28     -77.0   -40.0     6.0     7.0   208.0   392.0   442.0   
        29     -76.0   -11.0    -9.0     5.0   224.0   386.0   440.0   
...              ...     ...     ...     ...     ...     ...     ...   
        7559   -65.0    -9.0   -10.0     5.0   199.0   405.0   439.0   
        7560   -66.0    -7.0   -10.0     5.0   199.0   409.0   459.0   
        7561   -65.0    -8.0   -10.0     4.0   201.0   395.0   469.0   
        7562   -63.0    -9.0    -9.0     3.0   205.0   387.0   467.0   
        7563   -61.0    -8.0    -9.0     4.0   197.0   381.0   465.0   
        7564   -63.0    -8.0    -9.0     4.0   209.0   377.0   457.0   
        7565   -65.0    -9.0   -10.0     5.0   201.0   383.0   445.0   
        7566   -62.0    -8.0    -9.0     5.0   211.0   377.0   441.0   
        7567   -60.0    -7.0    -9.0     5.0   208.0   384.0   438.0   
        7568   -57.0    -6.0    -9.0     6.0   204.0   374.0   434.0   
        7569   -62.0    -7.0   -10.0     5.0   207.0   385.0   435.0   
        7570   -56.0    -6.0   -10.0     6.0   210.0   396.0   432.0   
        7571   -56.0    -6.0   -11.0     4.0   203.0   397.0   429.0   
        7572   -56.0    -7.0   -11.0     5.0   196.0   396.0   438.0   
        7573   -56.0    -6.0   -11.0     8.0   205.0   389.0   433.0   
        7574   -58.0    -7.0   -12.0     5.0   211.0   397.0   429.0   
        7575   -57.0    -6.0   -12.0     4.0   201.0   395.0   429.0   
        7576   -58.0    -6.0   -12.0     4.0   210.0   392.0   432.0   
        7577   -57.0    -6.0   -12.0     5.0   216.0   402.0   426.0   
        7578   -55.0    -6.0   -13.0     7.0   208.0   394.0   424.0   
        7579   -59.0    -7.0   -12.0     7.0   207.0   389.0   433.0   
        7580   -56.0    -8.0   -11.0     6.0   213.0   395.0   429.0   
        7581   -60.0    -8.0   -13.0     5.0   212.0   400.0   424.0   
        7582     NaN     NaN     NaN     NaN     NaN     NaN     NaN   
        7583     NaN     NaN     NaN     NaN     NaN     NaN     NaN   
        7584     NaN     NaN     NaN     NaN     NaN     NaN     NaN   
        7585     NaN     NaN     NaN     NaN     NaN     NaN     NaN   
        7586     NaN     NaN     NaN     NaN     NaN     NaN     NaN   
        7587     NaN     NaN     NaN     NaN     NaN     NaN     NaN   
        7588     NaN     NaN     NaN     NaN     NaN     NaN     NaN   

               Latitude   Longitude  
ride_id                              
14888   0           NaN         NaN  
        1           NaN         NaN  
        2           NaN         NaN  
        3           NaN         NaN  
        4           NaN         NaN  
        5           NaN         NaN  
        6           NaN         NaN  
        7           NaN         NaN  
        8           NaN         NaN  
        9           NaN         NaN  
        10          NaN         NaN  
        11          NaN         NaN  
        12          NaN         NaN  
        13          NaN         NaN  
        14          NaN         NaN  
        15          NaN         NaN  
        16          NaN         NaN  
        17          NaN         NaN  
        18          NaN         NaN  
        19          NaN         NaN  
        20          NaN         NaN  
        21          NaN         NaN  
        22          NaN         NaN  
        23          NaN         NaN  
        24          NaN         NaN  
        25          NaN         NaN  
        26          NaN         NaN  
        27          NaN         NaN  
        28          NaN         NaN  
        29          NaN         NaN  
...                 ...         ...  
        7559        NaN         NaN  
        7560        NaN         NaN  
        7561        NaN         NaN  
        7562        NaN         NaN  
        7563        NaN         NaN  
        7564        NaN         NaN  
        7565        NaN         NaN  
        7566        NaN         NaN  
        7567        NaN         NaN  
        7568        NaN         NaN  
        7569        NaN         NaN  
        7570        NaN         NaN  
        7571        NaN         NaN  
        7572        NaN         NaN  
        7573        NaN         NaN  
        7574        NaN         NaN  
        7575        NaN         NaN  
        7576        NaN         NaN  
        7577        NaN         NaN  
        7578        NaN         NaN  
        7579        NaN         NaN  
        7580        NaN         NaN  
        7581        NaN         NaN  
        7582  3286943.0 -11725208.0  
        7583  3286942.0 -11725208.0  
        7584  3286941.0 -11725207.0  
        7585  3286941.0 -11725206.0  
        7586  3286941.0 -11725206.0  
        7587  3286942.0 -11725206.0  
        7588  3286943.0 -11725207.0  

[7589 rows x 13 columns]

Drop NAs from dataset (excluding Lat and Long)

#Drop the "nan" values from the columns that we care about. 
dropped_motion_df = motion_df.dropna(subset=['Time', 'IMU A1', 'IMU A2', 'IMU A3', 'IMU G1', 'IMU G2', 'IMU G3', 'IMU M1', 
                                            'IMU M2', 'IMU M3'])
print(dropped_motion_df)
                                         UTC        Time  IMU A1  IMU A2  \
ride_id                                                                    
14888   0     2018-07-30T17:17:24.3320+00:00  2067196596   -34.0  -520.0   
        1     2018-07-30T17:17:24.3650+00:00  2067196629   -30.0  -517.0   
        2     2018-07-30T17:17:24.3990+00:00  2067196662   -28.0  -517.0   
        3     2018-07-30T17:17:24.4320+00:00  2067196695   -28.0  -518.0   
        4     2018-07-30T17:17:24.4650+00:00  2067196728   -30.0  -517.0   
        5     2018-07-30T17:17:24.4980+00:00  2067196761   -31.0  -518.0   
        6     2018-07-30T17:17:24.5310+00:00  2067196794   -33.0  -520.0   
        7     2018-07-30T17:17:24.5650+00:00  2067196828   -30.0  -519.0   
        8     2018-07-30T17:17:24.5970+00:00  2067196860   -30.0  -517.0   
        9     2018-07-30T17:17:24.6310+00:00  2067196894   -29.0  -517.0   
        10    2018-07-30T17:17:24.6630+00:00  2067196926   -30.0  -518.0   
        11    2018-07-30T17:17:24.6960+00:00  2067196959   -32.0  -520.0   
        12    2018-07-30T17:17:24.7300+00:00  2067196992   -32.0  -518.0   
        13    2018-07-30T17:17:24.7630+00:00  2067197025   -30.0  -517.0   
        14    2018-07-30T17:17:24.7960+00:00  2067197058   -28.0  -516.0   
        15    2018-07-30T17:17:24.8290+00:00  2067197091   -27.0  -516.0   
        16    2018-07-30T17:17:24.8620+00:00  2067197124   -31.0  -518.0   
        17    2018-07-30T17:17:24.8950+00:00  2067197157   -34.0  -518.0   
        18    2018-07-30T17:17:24.9290+00:00  2067197191   -33.0  -519.0   
        19    2018-07-30T17:17:24.9610+00:00  2067197223   -30.0  -517.0   
        20    2018-07-30T17:17:24.9950+00:00  2067197257   -27.0  -516.0   
        21    2018-07-30T17:17:25.0280+00:00  2067197290   -28.0  -516.0   
        22    2018-07-30T17:17:25.0620+00:00  2067197323     7.0  -516.0   
        23    2018-07-30T17:17:25.0950+00:00  2067197356   -50.0  -518.0   
        24    2018-07-30T17:17:25.1280+00:00  2067197389   -38.0  -517.0   
        25    2018-07-30T17:17:25.1610+00:00  2067197422   -39.0  -516.0   
        26    2018-07-30T17:17:25.1940+00:00  2067197455   -29.0  -517.0   
        27    2018-07-30T17:17:25.2280+00:00  2067197489   -29.0  -517.0   
        28    2018-07-30T17:17:25.2600+00:00  2067197521   -29.0  -517.0   
        29    2018-07-30T17:17:25.2930+00:00  2067197554   -30.0  -517.0   
...                                      ...         ...     ...     ...   
        7551  2018-07-30T17:30:49.0880+00:00  2067998973     3.0  -548.0   
        7552  2018-07-30T17:30:49.2880+00:00  2067999172    -2.0  -560.0   
        7553  2018-07-30T17:30:49.4880+00:00  2067999371    -9.0  -567.0   
        7554  2018-07-30T17:30:49.6860+00:00  2067999569   -24.0  -564.0   
        7555  2018-07-30T17:30:49.8860+00:00  2067999768   -31.0  -561.0   
        7557  2018-07-30T17:30:50.0850+00:00  2067999967   -37.0  -563.0   
        7558  2018-07-30T17:30:50.2840+00:00  2068000165   -50.0  -561.0   
        7559  2018-07-30T17:30:50.4950+00:00  2068000375   -58.0  -553.0   
        7560  2018-07-30T17:30:50.6940+00:00  2068000574   -65.0  -549.0   
        7561  2018-07-30T17:30:50.8930+00:00  2068000772   -73.0  -539.0   
        7562  2018-07-30T17:30:51.0920+00:00  2068000971   -73.0  -530.0   
        7563  2018-07-30T17:30:51.2910+00:00  2068001169   -76.0  -522.0   
        7564  2018-07-30T17:30:51.4910+00:00  2068001368   -78.0  -510.0   
        7565  2018-07-30T17:30:51.6900+00:00  2068001567   -73.0  -497.0   
        7566  2018-07-30T17:30:51.8890+00:00  2068001765   -73.0  -494.0   
        7567  2018-07-30T17:30:52.0980+00:00  2068001974   -64.0  -480.0   
        7568  2018-07-30T17:30:52.2970+00:00  2068002172   -57.0  -480.0   
        7569  2018-07-30T17:30:52.4960+00:00  2068002371   -50.0  -477.0   
        7570  2018-07-30T17:30:52.6960+00:00  2068002570   -40.0  -472.0   
        7571  2018-07-30T17:30:52.8950+00:00  2068002768   -32.0  -469.0   
        7572  2018-07-30T17:30:53.0930+00:00  2068002966   -20.0  -469.0   
        7573  2018-07-30T17:30:53.3030+00:00  2068003175   -14.0  -472.0   
        7574  2018-07-30T17:30:53.5020+00:00  2068003374    -4.0  -475.0   
        7575  2018-07-30T17:30:53.7020+00:00  2068003573     3.0  -480.0   
        7576  2018-07-30T17:30:53.9010+00:00  2068003771     8.0  -491.0   
        7577  2018-07-30T17:30:54.1000+00:00  2068003970    12.0  -498.0   
        7578  2018-07-30T17:30:54.3000+00:00  2068004169    14.0  -509.0   
        7579  2018-07-30T17:30:54.4980+00:00  2068004367    17.0  -514.0   
        7580  2018-07-30T17:30:54.6980+00:00  2068004566    16.0  -523.0   
        7581  2018-07-30T17:30:54.9080+00:00  2068004775    14.0  -530.0   

              IMU A3  IMU G1  IMU G2  IMU G3  IMU M1  IMU M2  IMU M3  \
ride_id                                                                
14888   0      -48.0    82.0   -19.0    12.0   208.0   394.0   438.0   
        1      -57.0    32.0   -14.0     9.0   220.0   400.0   438.0   
        2      -59.0    -7.0   -11.0     6.0   218.0   398.0   430.0   
        3      -62.0   -27.0    -9.0     5.0   210.0   400.0   428.0   
        4      -62.0    64.0   -13.0     9.0   212.0   394.0   426.0   
        5      -54.0   157.0   -24.0    17.0   215.0   399.0   433.0   
        6      -41.0    29.0   -14.0     9.0   220.0   400.0   432.0   
        7      -46.0  -101.0    -3.0     2.0   216.0   406.0   432.0   
        8      -55.0  -121.0    -1.0     1.0   213.0   401.0   429.0   
        9      -63.0   -26.0    -8.0     6.0   218.0   396.0   428.0   
        10     -57.0    -7.0   -11.0     5.0   209.0   407.0   427.0   
        11     -54.0    -3.0   -11.0     6.0   212.0   398.0   440.0   
        12     -57.0   -22.0    -8.0     7.0   220.0   400.0   432.0   
        13     -60.0   -27.0    -9.0     6.0   208.0   400.0   434.0   
        14     -58.0    11.0   -12.0     9.0   216.0   396.0   430.0   
        15     -58.0    -4.0   -10.0     6.0   213.0   403.0   437.0   
        16     -55.0   -32.0    -8.0     4.0   211.0   405.0   441.0   
        17     -62.0   -71.0    -7.0     3.0   209.0   403.0   437.0   
        18     -62.0   -32.0    -9.0     5.0   203.0   395.0   433.0   
        19     -66.0   -68.0    14.0     5.0   213.0   395.0   441.0   
        20     -66.0   -97.0    25.0     3.0   218.0   392.0   436.0   
        21     -68.0   -60.0    10.0     6.0   216.0   392.0   440.0   
        22     -71.0   -24.0     4.0     5.0   217.0   397.0   441.0   
        23     -73.0   -47.0    13.0     5.0   217.0   399.0   445.0   
        24     -72.0   -43.0     6.0     8.0   210.0   396.0   442.0   
        25     -74.0   -29.0    -1.0     7.0   219.0   389.0   441.0   
        26     -73.0    -7.0   -11.0     6.0   214.0   396.0   448.0   
        27     -75.0   -53.0     9.0     6.0   210.0   402.0   440.0   
        28     -77.0   -40.0     6.0     7.0   208.0   392.0   442.0   
        29     -76.0   -11.0    -9.0     5.0   224.0   386.0   440.0   
...              ...     ...     ...     ...     ...     ...     ...   
        7551   -60.0    -8.0   -11.0     7.0   208.0   396.0   428.0   
        7552   -65.0   -11.0   -11.0     6.0   204.0   396.0   434.0   
        7553   -61.0    -9.0   -11.0     4.0   207.0   401.0   423.0   
        7554   -63.0    -8.0   -10.0     4.0   215.0   395.0   429.0   
        7555   -66.0    -9.0   -10.0     4.0   205.0   403.0   425.0   
        7557   -66.0    -9.0   -10.0     6.0   200.0   402.0   440.0   
        7558   -66.0    -9.0   -10.0     6.0   202.0   398.0   446.0   
        7559   -65.0    -9.0   -10.0     5.0   199.0   405.0   439.0   
        7560   -66.0    -7.0   -10.0     5.0   199.0   409.0   459.0   
        7561   -65.0    -8.0   -10.0     4.0   201.0   395.0   469.0   
        7562   -63.0    -9.0    -9.0     3.0   205.0   387.0   467.0   
        7563   -61.0    -8.0    -9.0     4.0   197.0   381.0   465.0   
        7564   -63.0    -8.0    -9.0     4.0   209.0   377.0   457.0   
        7565   -65.0    -9.0   -10.0     5.0   201.0   383.0   445.0   
        7566   -62.0    -8.0    -9.0     5.0   211.0   377.0   441.0   
        7567   -60.0    -7.0    -9.0     5.0   208.0   384.0   438.0   
        7568   -57.0    -6.0    -9.0     6.0   204.0   374.0   434.0   
        7569   -62.0    -7.0   -10.0     5.0   207.0   385.0   435.0   
        7570   -56.0    -6.0   -10.0     6.0   210.0   396.0   432.0   
        7571   -56.0    -6.0   -11.0     4.0   203.0   397.0   429.0   
        7572   -56.0    -7.0   -11.0     5.0   196.0   396.0   438.0   
        7573   -56.0    -6.0   -11.0     8.0   205.0   389.0   433.0   
        7574   -58.0    -7.0   -12.0     5.0   211.0   397.0   429.0   
        7575   -57.0    -6.0   -12.0     4.0   201.0   395.0   429.0   
        7576   -58.0    -6.0   -12.0     4.0   210.0   392.0   432.0   
        7577   -57.0    -6.0   -12.0     5.0   216.0   402.0   426.0   
        7578   -55.0    -6.0   -13.0     7.0   208.0   394.0   424.0   
        7579   -59.0    -7.0   -12.0     7.0   207.0   389.0   433.0   
        7580   -56.0    -8.0   -11.0     6.0   213.0   395.0   429.0   
        7581   -60.0    -8.0   -13.0     5.0   212.0   400.0   424.0   

              Latitude  Longitude  
ride_id                            
14888   0          NaN        NaN  
        1          NaN        NaN  
        2          NaN        NaN  
        3          NaN        NaN  
        4          NaN        NaN  
        5          NaN        NaN  
        6          NaN        NaN  
        7          NaN        NaN  
        8          NaN        NaN  
        9          NaN        NaN  
        10         NaN        NaN  
        11         NaN        NaN  
        12         NaN        NaN  
        13         NaN        NaN  
        14         NaN        NaN  
        15         NaN        NaN  
        16         NaN        NaN  
        17         NaN        NaN  
        18         NaN        NaN  
        19         NaN        NaN  
        20         NaN        NaN  
        21         NaN        NaN  
        22         NaN        NaN  
        23         NaN        NaN  
        24         NaN        NaN  
        25         NaN        NaN  
        26         NaN        NaN  
        27         NaN        NaN  
        28         NaN        NaN  
        29         NaN        NaN  
...                ...        ...  
        7551       NaN        NaN  
        7552       NaN        NaN  
        7553       NaN        NaN  
        7554       NaN        NaN  
        7555       NaN        NaN  
        7557       NaN        NaN  
        7558       NaN        NaN  
        7559       NaN        NaN  
        7560       NaN        NaN  
        7561       NaN        NaN  
        7562       NaN        NaN  
        7563       NaN        NaN  
        7564       NaN        NaN  
        7565       NaN        NaN  
        7566       NaN        NaN  
        7567       NaN        NaN  
        7568       NaN        NaN  
        7569       NaN        NaN  
        7570       NaN        NaN  
        7571       NaN        NaN  
        7572       NaN        NaN  
        7573       NaN        NaN  
        7574       NaN        NaN  
        7575       NaN        NaN  
        7576       NaN        NaN  
        7577       NaN        NaN  
        7578       NaN        NaN  
        7579       NaN        NaN  
        7580       NaN        NaN  
        7581       NaN        NaN  

[7463 rows x 13 columns]

Calculate time offsets, and normalize columns

# To store time elapsed between each measurement, and time offset from 0s
time_e_list = []
time_o_list = []

#Remove all nan instances in time:
time_array_nans = np.array(dropped_motion_df.loc[:,"Time"], dtype=float)
time_array = []
imuA1_array_nans = np.array(dropped_motion_df.loc[:,"IMU A1"], dtype=float)
imu_array_A1 = []
imuA2_array_nans = np.array(dropped_motion_df.loc[:,"IMU A2"], dtype=float)
imu_array_A2 = []
imuA3_array_nans = np.array(dropped_motion_df.loc[:,"IMU A3"], dtype=float)
imu_array_A3 = []
imuG1_array_nans = np.array(dropped_motion_df.loc[:,"IMU G1"], dtype=float)
imu_array_G1 = []
imuG2_array_nans = np.array(dropped_motion_df.loc[:,"IMU G2"], dtype=float)
imu_array_G2 = []
imuG3_array_nans = np.array(dropped_motion_df.loc[:,"IMU G3"], dtype=float)
imu_array_G3 = []
imuM1_array_nans = np.array(dropped_motion_df.loc[:,"IMU M1"], dtype=float)
imu_array_M1 = []
imuM2_array_nans = np.array(dropped_motion_df.loc[:,"IMU M2"], dtype=float)
imu_array_M2 = []
imuM3_array_nans = np.array(dropped_motion_df.loc[:,"IMU M3"], dtype=float)
imu_array_M3 = []


#Get all the times and imus where time, imu a1, imu a2, and imu a3 are NOT nan values:
for t,x,y,z,a,b,c,d,e,f in zip(time_array_nans, imuA1_array_nans, imuA2_array_nans, imuA3_array_nans, imuG1_array_nans, 
                              imuG2_array_nans, imuG3_array_nans, imuM1_array_nans, imuM2_array_nans, imuM3_array_nans):
    if (np.isnan(t)==0 and np.isnan(x)==0 and np.isnan(y)==0 and np.isnan(z)==0):
        time_array.append(t)
        imu_array_A1.append(x)
        imu_array_A2.append(y)
        imu_array_A3.append(z)
        imu_array_G1.append(a)
        imu_array_G2.append(b)
        imu_array_G3.append(c)
        imu_array_M1.append(d)
        imu_array_M2.append(e)
        imu_array_M3.append(f)

#for x in time_array:
#    print(x)
    
start_time = time_array[0]
time_len = len(time_array)
    
i = 0
while (i < time_len - 1):
    prev = time_array[i]
    after = time_array[i+1]
    offset = after - prev
    #if (np.isnan(offset)==0):
    time_o_list.append(offset)
    
    elapsed = time_array[i] - start_time
    #if (np.isnan(elapsed)==0):
    time_e_list.append(elapsed)
    
    i = i + 1

##Check to make sure there are no "nan" values:
i = 0
while (i < len(time_o_list)):
    if (np.isnan(time_o_list[i])):
        print("Error! Value at index: ", i, " is nan")
    i = i + 1

#Drop the last value from each of the imu lists to make it match the time list.
del(imu_array_A1[-1])
del(imu_array_A2[-1])
del(imu_array_A3[-1])
del(imu_array_G1[-1])
del(imu_array_G2[-1])
del(imu_array_G3[-1])
del(imu_array_M1[-1])
del(imu_array_M2[-1])
del(imu_array_M3[-1])
    
print(len(time_e_list))
print(len(time_o_list))
print(len(imu_array_A1))
print(len(imu_array_A2))
print(len(imu_array_A3))
print(len(imu_array_G1))
print(len(imu_array_G2))
print(len(imu_array_G3))
print(len(imu_array_M1))
print(len(imu_array_M2))
print(len(imu_array_M3))
CheckLength = len(time_e_list) + len(time_o_list) + len(imu_array_A1) + len(imu_array_A2) + len(imu_array_A3) + len(imu_array_G1) + len(imu_array_G2) + len(imu_array_G3) + len(imu_array_M1)+ len(imu_array_M2) + len(imu_array_M3)

if CheckLength//11 == len(time_e_list):
    print("All columns are matching!")
7462
7462
7462
7462
7462
7462
7462
7462
7462
7462
7462
All columns are matching!

Convert raw units to actual units (acc to [m/s^2]) and (time to [s])

#Raw acceleration constant 512 = 1g (accelerometer's measured force due to gravity)
g_const = 512

#Approximate measurement for gravity:
gravity = 9.80665

# Correct the IMU Acceleration columns into units of meters
def convert_acc_units(acc_array):
    ret_array = []
    for a in acc_array:
        #Acceleration is now in m/s^2, need to subtract gravity from vertical axis. (??)
        new_a = a / g_const * gravity + gravity
        ret_array.append(new_a)
    return ret_array

imu1_array = convert_acc_units(imu_array_A1) #new units in m/s^2
imu2_array = convert_acc_units(imu_array_A2) #new units in m/s^2
imu3_array = convert_acc_units(imu_array_A3) #new units in m/s^2

# To check:
#for x,y in zip(imu2_array, imu_array_A2):
#   print(x,y)
    
def convert_time_units(time_array):
    ret_array = []
    for t in time_array:
        new_t = t * (10**(-3)) #converting units in milliseconds to seconds
        ret_array.append(new_t)
    return ret_array

time_o_array = convert_time_units(time_o_list) #new units in seconds
time_e_array = convert_time_units(time_e_list) #new units in seconds

# To check:
# for t in time_e_array:
#    print(t)
print("Done!")
Done!

Calculate and plot magnitude of acceleration on X-Z plane

# Square x and z acceleration values
accel_xz_array = [];
for i in range(0, len(imu1_array)): 
    currMagnitude = math.sqrt((math.pow(imu1_array[i], 2) + math.pow(imu3_array[i], 2)))
    accel_xz_array.append(currMagnitude)

print("Graph of XZ Acceleration vs. Time")

plt.plot(time_e_array, accel_xz_array)
plt.xlabel("Time (s)")
plt.ylabel("Acceleration-XZ (m/s^2)")
plt.show()
Graph of XZ Acceleration vs. Time

png

Center and Calibrate Magnetometer Data

# Offset variables help in recentering the magnetic data in order to define direction and use trig functions
M1_offset_var = 219.786
M2_offset_var = 180
M3_offset_var = 280

def calibrate_magn_data(magn_array, offset_value):
    ret_array = []
    for m in magn_array:
        new_m = m - offset_value
        ret_array.append(new_m)
    return ret_array

imuM1_array = calibrate_magn_data(imu_array_M1, M1_offset_var)
imuM2_array = calibrate_magn_data(imu_array_M2, M2_offset_var)
imuM3_array = calibrate_magn_data(imu_array_M3, M3_offset_var)

# Check 
# print(imuM1_array)
print("Done.")
Done.

Set up 3xN arrays for Magnetometer and Accel values

# Create N x 3 arrays for functions that need them later on, such as Scikit Kinematics
magn_height = len(imuM1_array)
acc_height = len(imu1_array)

acc_array = np.zeros(shape=(acc_height,3))
magn_array = np.zeros(shape=(magn_height,3))

print("For Accelerometer: ")
for x in range(len(acc_array)):
    acc_array[x,0] = imu1_array[x]
    acc_array[x,1] = imu2_array[x]
    acc_array[x,2] = imu3_array[x]
print(acc_array)

print("\nFor Magnetometer: ")
for x in range(len(magn_array)):
    magn_array[x,0] = imuM1_array[x]
    magn_array[x,1] = imuM2_array[x]
    magn_array[x,2] = imuM3_array[x]

print(magn_array)
print("Done.")
For Accelerometer: 
[[ 9.15542715 -0.15322891  8.88727656]
 [ 9.2320416  -0.09576807  8.71489404]
 [ 9.27034883 -0.09576807  8.67658682]
 ...
 [10.07480059  0.05746084  8.75320127]
 [10.13226143 -0.03830723  8.67658682]
 [10.11310781 -0.21068975  8.73404766]]

For Magnetometer: 
[[-1.1786e+01  2.1400e+02  1.5800e+02]
 [ 2.1400e-01  2.2000e+02  1.5800e+02]
 [-1.7860e+00  2.1800e+02  1.5000e+02]
 ...
 [-1.1786e+01  2.1400e+02  1.4400e+02]
 [-1.2786e+01  2.0900e+02  1.5300e+02]
 [-6.7860e+00  2.1500e+02  1.4900e+02]]
Done.

Conversion from fin-frame to board-frame

Orientation from here onwards will be from the board/surfers reference frame (yaw left = turning left)

x = -IMU1, y = -IMU3, z = -IMU2

# The new array for board reference frame will have the IMUs in columns according to X,Y,Z directions
board_acc = acc_array.copy()       # Reassign to the correct axes as stated above
temp_x_acc = board_acc[:,0] * (-1)
temp_y_acc = board_acc[:,1] * (-1)
temp_z_acc = board_acc[:,2] * (-1)
board_acc[:,0] = temp_x_acc     # X acceleration
board_acc[:,1] = temp_y_acc     # Y acceleration
board_acc[:,2] = temp_z_acc     # Z acceleration
print(board_acc)
print("\n")

board_magn = magn_array.copy()
temp_x_magn = board_magn[:,0] * (-1)
temp_y_magn = board_magn[:,1] * (-1)
temp_z_magn = board_magn[:,2] * (-1)
board_magn[:,0] = temp_x_magn
board_magn[:,1] = temp_y_magn
board_magn[:,2] = temp_z_magn
print(board_magn)
print("Done.")
[[ -9.15542715   0.15322891  -8.88727656]
 [ -9.2320416    0.09576807  -8.71489404]
 [ -9.27034883   0.09576807  -8.67658682]
 ...
 [-10.07480059  -0.05746084  -8.75320127]
 [-10.13226143   0.03830723  -8.67658682]
 [-10.11310781   0.21068975  -8.73404766]]


[[ 1.1786e+01 -2.1400e+02 -1.5800e+02]
 [-2.1400e-01 -2.2000e+02 -1.5800e+02]
 [ 1.7860e+00 -2.1800e+02 -1.5000e+02]
 ...
 [ 1.1786e+01 -2.1400e+02 -1.4400e+02]
 [ 1.2786e+01 -2.0900e+02 -1.5300e+02]
 [ 6.7860e+00 -2.1500e+02 -1.4900e+02]]
Done.

Calculate magnitude of XYZ acceleration vs time

# Square x, y and z acceleration values
accel_xyz_array = [];
for i in range(0, len(board_acc)): 
    currMagnitude = math.sqrt(math.pow(board_acc[i][0], 2) + math.pow(board_acc[i][1], 2) + math.pow(board_acc[i][2], 2))
    accel_xyz_array.append(currMagnitude)

# Check length
print(len(accel_xyz_array))
print("Graph of XYZ Acceleration vs. Time")

plt.plot(time_e_array, accel_xyz_array)
plt.xlabel("Time (s)")
plt.ylabel("Acceleration-XYZ (m/s^2)")
plt.show()
7462
Graph of XYZ Acceleration vs. Time

png

Azimuth and altitude calculations

# Azimuth and Altitude LEGEND:
# Altitude is the angle between the ground and the vector 
# Azimuth is the angle going clockwise from 0 deg North:
# N - 0/360deg, E - 90deg, S - 180deg, W - 270deg

# This will get complicated (ie make cases or lots of if statements) when rotations about the heading become more prevalent
def azimuth(x,y,z):
    real_y = y * (-1) # This is to account for y 
    return (180/math.pi * math.atan2(real_y,x)) % 360

def altitude(x,y,z):
    h = math.hypot(y, x)
    return 180/math.pi * math.atan2(z,h)

def printAltAzi(alt, azi):
    print ("Alt:", alt, "\n", "Azi:",azi,"\n")
# These values are uncorrected values: still need to add or subtract 'declination'
#     (for AziMuth) and 'inclination' (for Altitude) correction values for geographical location

heading_altitude = board_magn[:,0].copy()
heading_azimuth = board_magn[:,0].copy()

i = 0     #iterator
#for i in range(len(M1_no_out)):
while i < len(heading_altitude):
    heading_altitude[i] = altitude(board_magn[i,0], board_magn[i,1], board_magn[i,2])
    heading_azimuth[i] = azimuth(board_magn[i,0], board_magn[i,1], board_magn[i,2])
    #printAltAzi(heading_altitude[i],heading_azimuth[i])
    i += 1

heading_azi_plot = plt.figure(figsize=(10,5))
azi_plot = heading_azi_plot.add_subplot(111)
azi_plot.plot(time_e_array, heading_azimuth)
azi_plot.set_title("Azimuth vs. Time")
azi_plot.set_xlabel("Time Elapsed[sec]")
azi_plot.set_ylabel("Azimuth [deg]")
azi_plot.set_ylim([-50,400])

heading_alt_plot = plt.figure(figsize=(10,5))
alt_plot = heading_alt_plot.add_subplot(111)
alt_plot.plot(time_e_array, heading_altitude)
alt_plot.set_title("Altitude vs. Time")
alt_plot.set_xlabel("Time Elapsed [sec]")
alt_plot.set_ylabel("Altitude [deg]")
plt.show()

#for t in range(len(time_e_array)):
    #printAltAzi(heading_altitude[t], heading_azimuth[t])

png

png

Plot polar azimuth and altitude

# Fixing random state for reproducibility
np.random.seed(19680801)

# Compute areas and colors
r = [i for i in range(0, len(board_magn))]
theta = heading_azimuth/360 * 2 * np.pi
area = 1
colors = theta

fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111, projection='polar')
c = ax.scatter(theta, r, c=colors, s=area, cmap='hsv', alpha=1)

# Compute areas and colors
alt_r = [i for i in range(0, len(board_magn))]
alt_theta = heading_altitude/360 * 2 * np.pi
alt_area = 1
alt_colors = theta

fig2 = plt.figure(figsize=(10,10))
ax2 = fig2.add_subplot(111, projection='polar')
c2 = ax2.scatter(alt_theta, alt_r, c=alt_colors, s=alt_area, cmap='hsv', alpha=1)

png

png

# Plot first 10 directional changes 
magnfig = plt.figure(figsize=(20,20))
magnaxi = magnfig.add_subplot(111, projection='3d')
magnaxi.scatter(board_magn[0,0], board_magn[0,2], board_magn[0,1], c='black', s=300, marker = "<")
magnaxi.scatter(board_magn[1:,0], board_magn[1:,2], board_magn[1:,1], c='black', s=10, marker = "o")
magnaxi.plot(board_magn[:,0], board_magn[:,2], board_magn[:,1], color='red')
magnaxi.set_xlabel("X Axis ->", fontsize=30)
magnaxi.set_ylabel("Y Axis ->", fontsize=30)
magnaxi.set_zlabel("Z Axis ->", fontsize=30)
plt.show()

png

Method 2 (Currently Not feasible)

Figure 1: Visual concept of multiple Smartfins

smartfins

As displayed in the diagram, the method for determining peak wave direction is to pool all the data from each of these Smartfins so that we can conduct a cumulative spectral analysis. This means instead of generating a frequency graph for a single ride, we will generate multiple graphs that represents the data for all the Smartfins, and then analyze the frequency transitions between close-by Smartfins.

Figure 2: Density-Frequency spectrum for each Smartfin

smartfins

As the graph suggests, the only difference between this frequency graph and the one used to determine wave height is the parameter wave density, which is essentially the average acceleration per unit of frequency. It represents the energy density per wave unit. Overall, we can compare each frequency graph side-by-side to see how the wave behaves when it starts from one Smartfin and reaches the next. Using this data, we can generalize the directional propagation and behaviour of the waves in the region covered by all the Smartfins. The projected result of my method can be visualized below:

Figure 3: Projected result of multiple tests

smartfins

Pros and Cons

  1. Currently, the most popular methods to determine wave direction involve using Buoys, which don't give sufficient data in terms of determining wave direction in a small region. Since buoys are spaced out hundred of meters apart and way offshore, it is almost impossible to determine proximal wave direction without the help of Smartfins.

  2. One way to generate a directional spectrum is to measure the same parameter - such as pressure - at a series of nearby locations using pressor sensors. I considered this, but realized that we didn't have the resources to conduct such an experiment.

  3. The other way to produce a directional spectrum is by measuring different parameters at the same point. This is the approach used in directional buoys, which measure pitch and roll in addition to vertical heave. However, even this could easily be achieved using an array of Smartfins. It would essentially accomplish the same task as the directional buoys, and it would be much easier to gather wave data for smaller regions.

  4. Using spectral analysis and frequency graphs, this method reuses the one for determining wave height, and is much simpler to execute.

  5. The only disadvantage I can forsee is the level of noise and inaccuracy presented by Smartfins and the potential for human error, for example when a surfer decides to paddle upstream, or push their surfboard deeper underwater into a wave.

Clone this wiki locally