Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

initial implementation of new default solvers; passing on Julia 0.6 #959

Merged
merged 9 commits into from
Feb 15, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion REQUIRE
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
julia 0.5
MathProgBase 0.5.1 0.6
MathProgBase 0.6 0.7
ReverseDiffSparse 0.7 0.8
ForwardDiff 0.3 0.4
Calculus
10 changes: 5 additions & 5 deletions src/JuMPArray.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,14 +3,14 @@
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.

immutable JuMPArray{T,N,NT<:NTuple} <: JuMPContainer{T,N}
immutable JuMPArray{T,N,NT} <: JuMPContainer{T,N}
innerArray::Array{T,N}
indexsets::NT
lookup::NTuple{N,Dict}
lookup::NTuple{N,Any}
meta::Dict{Symbol,Any}
end

@generated function JuMPArray{T,N}(innerArray::Array{T,N}, indexsets::NTuple{N})
@generated function JuMPArray{T,N}(innerArray::Array{T,N}, indexsets::NTuple{N,Any})
dicttuple = Expr(:tuple)
for i in 1:N
inner = quote
Expand All @@ -36,14 +36,14 @@ end

Base.getindex(d::JuMPArray, ::Colon) = d.innerArray[:]

@generated function Base.getindex{T,N,NT<:NTuple}(d::JuMPArray{T,N,NT}, idx...)
@generated function Base.getindex{T,N,NT}(d::JuMPArray{T,N,NT}, idx...)
if N != length(idx)
error("Indexed into a JuMPArray with $(length(idx)) indices (expected $N indices)")
end
Expr(:call, :getindex, :(d.innerArray), _to_cartesian(d,NT,idx)...)
end

@generated function Base.setindex!{T,N,NT<:NTuple}(d::JuMPArray{T,N,NT}, v, idx...)
@generated function Base.setindex!{T,N,NT}(d::JuMPArray{T,N,NT}, v, idx...)
if N != length(idx)
error("Indexed into a JuMPArray with $(length(idx)) indices (expected $N indices)")
end
Expand Down
8 changes: 4 additions & 4 deletions src/JuMPContainer.jl
Original file line number Diff line number Diff line change
Expand Up @@ -90,10 +90,10 @@ function gendict(instancename,T,idxsets...)
end
sizes = Expr(:tuple, [:(length($rng)) for rng in idxsets]...)
if truearray
:($instancename = Array($T, $sizes...))
:($instancename = Array{$T}($sizes...))
else
indexsets = Expr(:tuple, idxsets...)
:($instancename = JuMPArray(Array($T, $sizes...), $indexsets))
:($instancename = JuMPArray(Array{$T}($sizes...), $indexsets))
end
end

Expand All @@ -111,7 +111,7 @@ for (accessor, inner) in ((:getdual, :_getDual), (:getlowerbound, :getlowerbound
end


_similar(x::Array) = Array(Float64,size(x))
_similar(x::Array) = Array{Float64}(size(x))
_similar{T}(x::Dict{T}) = Dict{T,Float64}()

_innercontainer(x::JuMPArray) = x.innerArray
Expand Down Expand Up @@ -208,7 +208,7 @@ type KeyIterator{JA<:JuMPArray}
next_k_cache::Array{Any,1}
function KeyIterator(d)
n = ndims(d.innerArray)
new(d, n, Array(Any, n+1))
new(d, n, Array{Any}(n+1))
end
end

Expand Down
2 changes: 1 addition & 1 deletion src/affexpr.jl
Original file line number Diff line number Diff line change
Expand Up @@ -185,7 +185,7 @@ addconstraint(m::Model, c::Array{LinearConstraint}) =
error("The operators <=, >=, and == can only be used to specify scalar constraints. If you are trying to add a vectorized constraint, use the element-wise dot comparison operators (.<=, .>=, or .==) instead")

function addVectorizedConstraint(m::Model, v::Array{LinearConstraint})
ret = Array(LinConstrRef, size(v))
ret = Array{LinConstrRef}(size(v))
for I in eachindex(v)
ret[I] = addconstraint(m, v[I])
end
Expand Down
4 changes: 2 additions & 2 deletions src/macros.jl
Original file line number Diff line number Diff line change
Expand Up @@ -345,8 +345,8 @@ macro constraint(args...)
kwargs = Expr(:parameters)
end
kwsymbol = VERSION < v"0.6.0-dev" ? :kw : :(=)
append!(kwargs.args, collect(filter(x -> isexpr(x, kwsymbol), args))) # comma separated
args = collect(filter(x->!isexpr(x, kwsymbol), args))
append!(kwargs.args, filter(x -> isexpr(x, kwsymbol), collect(args))) # comma separated
args = filter(x->!isexpr(x, kwsymbol), collect(args))

if length(args) < 2
if length(kwargs.args) > 0
Expand Down
58 changes: 29 additions & 29 deletions src/nlp.jl
Original file line number Diff line number Diff line change
Expand Up @@ -152,12 +152,12 @@ type NLPEvaluator <: MathProgBase.AbstractNLPEvaluator
has_user_mv_operator |= ReverseDiffSparse.has_user_multivariate_operators(nlconstr.terms.nd)
end
d.disable_2ndorder = has_user_mv_operator
d.user_output_buffer = Array(Float64,m.nlpdata.largest_user_input_dimension)
d.jac_storage = Array(Float64,max(numVar,m.nlpdata.largest_user_input_dimension))
d.user_output_buffer = Array{Float64}(m.nlpdata.largest_user_input_dimension)
d.jac_storage = Array{Float64}(max(numVar,m.nlpdata.largest_user_input_dimension))
else
d.disable_2ndorder = false
d.user_output_buffer = Array(Float64,0)
d.jac_storage = Array(Float64,numVar)
d.user_output_buffer = Array{Float64}(0)
d.jac_storage = Array{Float64}(numVar)
end

d.eval_f_timer = 0
Expand Down Expand Up @@ -207,7 +207,7 @@ function FunctionStorage(nd::Vector{NodeData}, const_values,numVar, coloring_sto
else
hess_I = hess_J = Int[]
rinfo = Coloring.RecoveryInfo()
seed_matrix = Array(Float64,0,0)
seed_matrix = Array{Float64}(0,0)
linearity = [NONLINEAR]
end

Expand All @@ -223,7 +223,7 @@ function SubexpressionStorage(nd::Vector{NodeData}, const_values,numVar, fixed_v
reverse_storage = zeros(length(nd))
linearity = classify_linearity(nd, adj, subexpression_linearity, fixed_variables)

empty_arr = Array(Float64,0)
empty_arr = Array{Float64}(0)

return SubexpressionStorage(nd, adj, const_values, forward_storage, partials_storage, reverse_storage, empty_arr, empty_arr, empty_arr, linearity[1])

Expand Down Expand Up @@ -268,8 +268,8 @@ function MathProgBase.initialize(d::NLPEvaluator, requested_features::Vector{Sym

d.has_nlobj = isa(nldata.nlobj, NonlinearExprData)
max_expr_length = 0
main_expressions = Array(Vector{NodeData},0)
subexpr = Array(Vector{NodeData},0)
main_expressions = Array{Vector{NodeData}}(0)
subexpr = Array{Vector{NodeData}}(0)
for nlexpr in nldata.nlexpr
push!(subexpr, nlexpr.nd)
end
Expand All @@ -281,12 +281,12 @@ function MathProgBase.initialize(d::NLPEvaluator, requested_features::Vector{Sym
end
d.subexpression_order, individual_order = order_subexpressions(main_expressions,subexpr)

d.subexpression_linearity = Array(Linearity, length(nldata.nlexpr))
subexpression_variables = Array(Vector{Int}, length(nldata.nlexpr))
subexpression_edgelist = Array(Set{Tuple{Int,Int}}, length(nldata.nlexpr))
d.subexpressions = Array(SubexpressionStorage, length(nldata.nlexpr))
d.subexpression_forward_values = Array(Float64, length(d.subexpressions))
d.subexpression_reverse_values = Array(Float64, length(d.subexpressions))
d.subexpression_linearity = Array{Linearity}(length(nldata.nlexpr))
subexpression_variables = Array{Vector{Int}}(length(nldata.nlexpr))
subexpression_edgelist = Array{Set{Tuple{Int,Int}}}(length(nldata.nlexpr))
d.subexpressions = Array{SubexpressionStorage}(length(nldata.nlexpr))
d.subexpression_forward_values = Array{Float64}(length(d.subexpressions))
d.subexpression_reverse_values = Array{Float64}(length(d.subexpressions))

empty_edgelist = Set{Tuple{Int,Int}}()
for k in d.subexpression_order # only load expressions which actually are used
Expand Down Expand Up @@ -324,7 +324,7 @@ function MathProgBase.initialize(d::NLPEvaluator, requested_features::Vector{Sym
end

if :ExprGraph in requested_features
d.subexpressions_as_julia_expressions = Array(Any,length(subexpr))
d.subexpressions_as_julia_expressions = Array{Any}(length(subexpr))
for k in d.subexpression_order
if d.subexpression_linearity[k] != CONSTANT || !SIMPLIFY
ex = d.subexpressions[k]
Expand All @@ -336,7 +336,7 @@ function MathProgBase.initialize(d::NLPEvaluator, requested_features::Vector{Sym
end

if SIMPLIFY
main_expressions = Array(Vector{NodeData},0)
main_expressions = Array{Vector{NodeData}}(0)

# simplify objective and constraint expressions
if d.has_nlobj
Expand All @@ -350,7 +350,7 @@ function MathProgBase.initialize(d::NLPEvaluator, requested_features::Vector{Sym
# recompute dependencies after simplification
d.subexpression_order, individual_order = order_subexpressions(main_expressions,subexpr)

subexpr = Array(Vector{NodeData},length(d.subexpressions))
subexpr = Array{Vector{NodeData}}(length(d.subexpressions))
for k in d.subexpression_order
subexpr[k] = d.subexpressions[k].nd
end
Expand Down Expand Up @@ -379,13 +379,13 @@ function MathProgBase.initialize(d::NLPEvaluator, requested_features::Vector{Sym
max_chunk = min(max_chunk, 10) # 10 is hardcoded upper bound to avoid excess memory allocation

if d.want_hess || want_hess_storage # storage for Hess or HessVec
d.input_ϵ = Array(Float64,max_chunk*d.m.numCols)
d.output_ϵ = Array(Float64,max_chunk*d.m.numCols)
d.forward_storage_ϵ = Array(Float64,max_chunk*max_expr_length)
d.partials_storage_ϵ = Array(Float64,max_chunk*max_expr_length)
d.reverse_storage_ϵ = Array(Float64,max_chunk*max_expr_length)
d.subexpression_forward_values_ϵ = Array(Float64,max_chunk*length(d.subexpressions))
d.subexpression_reverse_values_ϵ = Array(Float64,max_chunk*length(d.subexpressions))
d.input_ϵ = Array{Float64}(max_chunk*d.m.numCols)
d.output_ϵ = Array{Float64}(max_chunk*d.m.numCols)
d.forward_storage_ϵ = Array{Float64}(max_chunk*max_expr_length)
d.partials_storage_ϵ = Array{Float64}(max_chunk*max_expr_length)
d.reverse_storage_ϵ = Array{Float64}(max_chunk*max_expr_length)
d.subexpression_forward_values_ϵ = Array{Float64}(max_chunk*length(d.subexpressions))
d.subexpression_reverse_values_ϵ = Array{Float64}(max_chunk*length(d.subexpressions))
for k in d.subexpression_order
subex = d.subexpressions[k]
subex.forward_storage_ϵ = zeros(Float64,max_chunk*length(subex.nd))
Expand All @@ -396,7 +396,7 @@ function MathProgBase.initialize(d::NLPEvaluator, requested_features::Vector{Sym
if d.want_hess
d.hess_I, d.hess_J = _hesslag_structure(d)
# JIT warm-up
MathProgBase.eval_hesslag(d, Array(Float64,length(d.hess_I)), d.m.colVal, 1.0, ones(MathProgBase.numconstr(d.m)))
MathProgBase.eval_hesslag(d, Array{Float64}(length(d.hess_I)), d.m.colVal, 1.0, ones(MathProgBase.numconstr(d.m)))
end
end

Expand Down Expand Up @@ -1311,7 +1311,7 @@ function getvalue(x::NonlinearExpression)
# could be smarter and cache

nldata::NLPData = m.nlpdata
subexpr = Array(Vector{NodeData},0)
subexpr = Array{Vector{NodeData}}(0)
for nlexpr in nldata.nlexpr
push!(subexpr, nlexpr.nd)
end
Expand All @@ -1322,14 +1322,14 @@ function getvalue(x::NonlinearExpression)

subexpression_order, individual_order = order_subexpressions(Vector{NodeData}[this_subexpr.nd],subexpr)

subexpr_values = Array(Float64, length(subexpr))
subexpr_values = Array{Float64}(length(subexpr))

for k in subexpression_order
max_len = max(max_len, length(nldata.nlexpr[k].nd))
end

forward_storage = Array(Float64, max_len)
partials_storage = Array(Float64, max_len)
forward_storage = Array{Float64}(max_len)
partials_storage = Array{Float64}(max_len)
user_input_buffer = zeros(nldata.largest_user_input_dimension)
user_output_buffer = zeros(nldata.largest_user_input_dimension)

Expand Down
28 changes: 14 additions & 14 deletions src/operators.jl
Original file line number Diff line number Diff line change
Expand Up @@ -478,11 +478,11 @@ end
_multiply_type(R,S) = typeof(one(R) * one(S))

# Don't do size checks here in _return_array, defer that to (*)
_return_array{R,S}(A::AbstractMatrix{R}, x::AbstractVector{S}) = _fillwithzeros(Array(_multiply_type(R,S), size(A,1)))
_return_array{R,S}(A::AbstractMatrix{R}, x::AbstractMatrix{S}) = _fillwithzeros(Array(_multiply_type(R,S), size(A,1), size(x,2)))
_return_array{R,S}(A::AbstractMatrix{R}, x::AbstractVector{S}) = _fillwithzeros(Array{_multiply_type(R,S)}(size(A,1)))
_return_array{R,S}(A::AbstractMatrix{R}, x::AbstractMatrix{S}) = _fillwithzeros(Array{_multiply_type(R,S)}(size(A,1), size(x,2)))
# these are for transpose return matrices
_return_arrayt{R,S}(A::AbstractMatrix{R}, x::AbstractVector{S}) = _fillwithzeros(Array(_multiply_type(R,S), size(A,2)))
_return_arrayt{R,S}(A::AbstractMatrix{R}, x::AbstractMatrix{S}) = _fillwithzeros(Array(_multiply_type(R,S), size(A,2), size(x, 2)))
_return_arrayt{R,S}(A::AbstractMatrix{R}, x::AbstractVector{S}) = _fillwithzeros(Array{_multiply_type(R,S)}(size(A,2)))
_return_arrayt{R,S}(A::AbstractMatrix{R}, x::AbstractMatrix{S}) = _fillwithzeros(Array{_multiply_type(R,S)}(size(A,2), size(x, 2)))

# helper so we don't fill the buffer array with the same object
function _fillwithzeros{T}(arr::Array{T})
Expand All @@ -497,28 +497,28 @@ typealias ArrayOrSparseMat{T} Union{Array{T}, SparseMatrixCSC{T}}

for op in [:+, :-]; @eval begin
function $op{T<:JuMPTypes}(lhs::Number,rhs::ArrayOrSparseMat{T})
ret = Array(typeof($op(lhs, zero(T))), size(rhs))
ret = Array{typeof($op(lhs, zero(T)))}(size(rhs))
for I in eachindex(ret)
ret[I] = $op(lhs, rhs[I])
end
ret
end
function $op{T<:JuMPTypes}(lhs::ArrayOrSparseMat{T},rhs::Number)
ret = Array(typeof($op(zero(T), rhs)), size(lhs))
ret = Array{typeof($op(zero(T), rhs))}(size(lhs))
for I in eachindex(ret)
ret[I] = $op(lhs[I], rhs)
end
ret
end
function $op{T<:JuMPTypes,S}(lhs::T,rhs::ArrayOrSparseMat{S})
ret = Array(typeof($op(lhs, zero(S))), size(rhs))
ret = Array{typeof($op(lhs, zero(S)))}(size(rhs))
for I in eachindex(ret)
ret[I] = $op(lhs, rhs[I])
end
ret
end
function $op{T<:JuMPTypes,S}(lhs::ArrayOrSparseMat{S},rhs::T)
ret = Array(typeof($op(zero(S), rhs)), size(lhs))
ret = Array{typeof($op(zero(S), rhs))}(size(lhs))
for I in eachindex(ret)
ret[I] = $op(lhs[I], rhs)
end
Expand All @@ -528,28 +528,28 @@ end; end

for op in [:*, :/]; @eval begin
function $op{T<:JuMPTypes}(lhs::Number,rhs::Array{T})
ret = Array(typeof($op(lhs, zero(T))), size(rhs))
ret = Array{typeof($op(lhs, zero(T)))}(size(rhs))
for I in eachindex(ret)
ret[I] = $op(lhs, rhs[I])
end
ret
end
function $op{T<:JuMPTypes}(lhs::Array{T},rhs::Number)
ret = Array(typeof($op(zero(T), rhs)), size(lhs))
ret = Array{typeof($op(zero(T), rhs))}(size(lhs))
for I in eachindex(ret)
ret[I] = $op(lhs[I], rhs)
end
ret
end
function $op{T<:JuMPTypes,S}(lhs::T,rhs::Array{S})
ret = Array(typeof($op(lhs, zero(S))), size(rhs))
ret = Array{typeof($op(lhs, zero(S)))}(size(rhs))
for I in eachindex(ret)
ret[I] = $op(lhs, rhs[I])
end
ret
end
function $op{T<:JuMPTypes,S}(lhs::Array{S},rhs::T)
ret = Array(typeof($op(zero(S), rhs)), size(lhs))
ret = Array{typeof($op(zero(S), rhs))}(size(lhs))
for I in eachindex(ret)
ret[I] = $op(lhs[I], rhs)
end
Expand All @@ -573,7 +573,7 @@ end; end
for op in [:(+), :(-)]; @eval begin
function $op(lhs::Array{Variable},rhs::Array{Variable})
(sz = size(lhs)) == size(rhs) || error("Incompatible sizes for $op: $sz $op $(size(rhs))")
ret = Array(AffExpr, sz)
ret = Array{AffExpr}(sz)
for I in eachindex(ret)
ret[I] = $op(lhs[I], rhs[I])
end
Expand All @@ -596,7 +596,7 @@ for (dotop,op) in [(:.+,:+), (:.-,:-), (:.*,:*), (:./,:/)]
@eval begin
function $dotop{S<:$T1,T<:$T2}(lhs::$S1{S},rhs::$S2{T})
size(lhs) == size(rhs) || error("Incompatible dimensions")
arr = Array(typeof($op(zero(S),zero(T))), size(rhs))
arr = Array{typeof($op(zero(S),zero(T)))}(size(rhs))
@inbounds for i in eachindex(lhs)
arr[i] = $op(lhs[i], rhs[i])
end
Expand Down
4 changes: 0 additions & 4 deletions src/parsenlp.jl
Original file line number Diff line number Diff line change
Expand Up @@ -198,11 +198,7 @@ function parseNLExpr_runtime(m::Model, x::Number, tape, parent, values)
nothing
end

# Temporary hack for deprecation of @defNLExpr syntax
const __last_model = Array(Model,1)

function parseNLExpr_runtime(m::Model, x::Variable, tape, parent, values)
__last_model[1] = x.m
x.m === m || error("Variable in nonlinear expression does not belong to corresponding model")
push!(tape, NodeData(VARIABLE, x.col, parent))
nothing
Expand Down
8 changes: 4 additions & 4 deletions src/print.jl
Original file line number Diff line number Diff line change
Expand Up @@ -433,7 +433,7 @@ function cont_str(mode, j, sym::PrintSymbols)
end
end
num_dims = length(data.indexsets)
idxvars = Array(String, num_dims)
idxvars = Array{String}(num_dims)
dimidx = 1
for i in 1:num_dims
if data.indexexprs[i].idxvar == nothing
Expand Down Expand Up @@ -627,7 +627,7 @@ function val_str(mode, dict::JuMPDict{Float64})

ndim = length(first(keys(dict.tupledict)))

key_strs = Array(AbstractString, length(dict), ndim)
key_strs = Array{String}(length(dict), ndim)
for (i, key) in enumerate(sortedkeys)
for j in 1:ndim
key_strs[i,j] = string(key[j])
Expand Down Expand Up @@ -679,7 +679,7 @@ function aff_str(mode, a::AffExpr, show_constant=true)
end

elm = 1
term_str = Array(String, 2*length(a.vars))
term_str = Array{String}(2*length(a.vars))
# For each model
for m in keys(moddict)
indvec = moddict[m]
Expand Down Expand Up @@ -741,7 +741,7 @@ function quad_str(mode, q::GenericQuadExpr, sym)
Qnnz = length(V)

# Odd terms are +/i, even terms are the variables/coeffs
term_str = Array(String, 2*Qnnz)
term_str = Array{String}(2*Qnnz)
if Qnnz > 0
for ind in 1:Qnnz
val = abs(V[ind])
Expand Down
2 changes: 1 addition & 1 deletion src/quadexpr.jl
Original file line number Diff line number Diff line change
Expand Up @@ -153,7 +153,7 @@ addconstraint(m::Model, c::Array{QuadConstraint}) =
error("Vectorized constraint added without elementwise comparisons. Try using one of (.<=,.>=,.==).")

function addVectorizedConstraint(m::Model, v::Array{QuadConstraint})
ret = Array(ConstraintRef{Model,QuadConstraint}, size(v))
ret = Array{ConstraintRef{Model,QuadConstraint}}(size(v))
for I in eachindex(v)
ret[I] = addconstraint(m, v[I])
end
Expand Down
Loading