Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Cherrypick Sequential serialization bug fix for r2.13 #18258

Merged
merged 1 commit into from
Jun 27, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 5 additions & 3 deletions keras/engine/sequential.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@
from keras.engine import training
from keras.engine import training_utils
from keras.saving import serialization_lib
from keras.saving.legacy import serialization as legacy_serialization
from keras.saving.legacy.saved_model import model_serialization
from keras.utils import generic_utils
from keras.utils import layer_utils
Expand Down Expand Up @@ -441,14 +442,15 @@ def compute_mask(self, inputs, mask):

def get_config(self):
layer_configs = []
serialize_obj_fn = serialization_lib.serialize_keras_object
if getattr(self, "use_legacy_config", None):
serialize_obj_fn = legacy_serialization.serialize_keras_object
for layer in super().layers:
# `super().layers` include the InputLayer if available (it is
# filtered out of `self.layers`). Note that
# `self._self_tracked_trackables` is managed by the tracking
# infrastructure and should not be used.
layer_configs.append(
serialization_lib.serialize_keras_object(layer)
)
layer_configs.append(serialize_obj_fn(layer))
config = training.Model.get_config(self)
config["name"] = self.name
config["layers"] = copy.deepcopy(layer_configs)
Expand Down
3 changes: 3 additions & 0 deletions keras/saving/legacy/hdf5_format.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,6 +81,9 @@ def save_model_to_hdf5(model, filepath, overwrite=True, include_optimizer=True):
"import h5py."
)

# Ensures that all models saved in HDF5 format follow the old serialization
model.use_legacy_config = True

# TODO(psv) Add warning when we save models that contain non-serializable
# entities like metrics added using `add_metric` and losses added using
# `add_loss.`
Expand Down
41 changes: 40 additions & 1 deletion keras/saving/legacy/save_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -1134,6 +1134,46 @@ def c(self):
)
self.assertIsInstance(reloaded_model, new_cls)

@test_combinations.generate(test_combinations.combine(mode=["eager"]))
def test_custom_sequential_registered_no_scope(self):
@object_registration.register_keras_serializable(package="my_package")
class MyDense(keras.layers.Dense):
def __init__(self, units, **kwargs):
super().__init__(units, **kwargs)

input_shape = [1]
inputs = keras.Input(shape=input_shape)
custom_layer = MyDense(1)
saved_model_dir = self._save_model_dir()
save_format = test_utils.get_save_format()

model = keras.Sequential(layers=[inputs, custom_layer])
model.save(saved_model_dir, save_format=save_format)
loaded_model = keras.models.load_model(saved_model_dir)

x = tf.constant([5])
self.assertAllEqual(model(x), loaded_model(x))

@test_combinations.generate(test_combinations.combine(mode=["eager"]))
def test_custom_functional_registered_no_scope(self):
@object_registration.register_keras_serializable(package="my_package")
class MyDense(keras.layers.Dense):
def __init__(self, units, **kwargs):
super().__init__(units, **kwargs)

saved_model_dir = self._save_model_dir()
save_format = test_utils.get_save_format()
input_shape = [1]
inputs = keras.Input(shape=input_shape)
outputs = MyDense(1)(inputs)
model = keras.Model(inputs, outputs)

model.save(saved_model_dir, save_format=save_format)
loaded_model = keras.models.load_model(saved_model_dir)

x = tf.constant([5])
self.assertAllEqual(model(x), loaded_model(x))

@test_combinations.generate(test_combinations.combine(mode=["eager"]))
def test_shared_objects(self):
class OuterLayer(keras.layers.Layer):
Expand Down Expand Up @@ -1222,7 +1262,6 @@ def _get_all_keys_recursive(dict_or_iterable):
with object_registration.CustomObjectScope(
{"OuterLayer": OuterLayer, "InnerLayer": InnerLayer}
):

# Test saving and loading to disk
save_format = test_utils.get_save_format()
saved_model_dir = self._save_model_dir()
Expand Down