Skip to content
This repository has been archived by the owner on Jul 24, 2024. It is now read-only.

Commit

Permalink
feat(analysis/special_functions/log): add log_div_self_antitone_on (#…
Browse files Browse the repository at this point in the history
…10985)

Adds lemma `log_div_self_antitone_on`, which shows that `log x / x` is decreasing when `exp 1 \le x`. Needed for Bertrand's postulate (#8002).
  • Loading branch information
BoltonBailey authored and erdOne committed Jan 1, 2022
1 parent e047d41 commit 1382e55
Showing 1 changed file with 23 additions and 0 deletions.
23 changes: 23 additions & 0 deletions src/analysis/special_functions/log.lean
Original file line number Diff line number Diff line change
Expand Up @@ -172,6 +172,29 @@ begin
{ rintro (rfl|rfl|rfl); simp only [log_one, log_zero, log_neg_eq_log], }
end

lemma log_le_sub_one_of_pos {x : ℝ} (hx : 0 < x) : log x ≤ x - 1 :=
begin
rw le_sub_iff_add_le,
convert add_one_le_exp (log x),
rw exp_log hx,
end

lemma log_div_self_antitone_on : antitone_on (λ x : ℝ, log x / x) {x | exp 1 ≤ x} :=
begin
simp only [antitone_on, mem_set_of_eq],
intros x hex y hey hxy,
have x_pos : 0 < x := (exp_pos 1).trans_le hex,
have y_pos : 0 < y := (exp_pos 1).trans_le hey,
have hlogx : 1 ≤ log x := by rwa le_log_iff_exp_le x_pos,
have hyx : 0 ≤ y / x - 1 := by rwa [le_sub_iff_add_le, le_div_iff x_pos, zero_add, one_mul],
rw [div_le_iff y_pos, ←sub_le_sub_iff_right (log x)],
calc
log y - log x = log (y / x) : by rw [log_div (y_pos.ne') (x_pos.ne')]
... ≤ (y / x) - 1 : log_le_sub_one_of_pos (div_pos y_pos x_pos)
... ≤ log x * (y / x - 1) : le_mul_of_one_le_left hyx hlogx
... = log x / x * y - log x : by ring,
end

/-- The real logarithm function tends to `+∞` at `+∞`. -/
lemma tendsto_log_at_top : tendsto log at_top at_top :=
tendsto_comp_exp_at_top.1 $ by simpa only [log_exp] using tendsto_id
Expand Down

0 comments on commit 1382e55

Please sign in to comment.