-
Notifications
You must be signed in to change notification settings - Fork 218
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Add stub ReazonSpeech recipe I created this recipe by copying "aishell4" recipe, and stripping the most of the contents. Signed-off-by: Fujimoto Seiji <fujimoto@ceptord.net> * Format the script with black to meet style guidelines * Add ReazonSpeech to the dataset table * Add a download method and refactor the prepare function * Fix the TypeError when download the subset * Format to follow the code style * Change to local import * Format to follow the code style --------- Signed-off-by: Fujimoto Seiji <fujimoto@ceptord.net> Co-authored-by: Fujimoto Seiji <fujimoto@ceptord.net> Co-authored-by: Chen <qc@KDM00.cm.cluster> Co-authored-by: root <root@KDA01.cm.cluster>
- Loading branch information
1 parent
26c3911
commit c778520
Showing
5 changed files
with
301 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
import logging | ||
from typing import List | ||
|
||
import click | ||
|
||
from lhotse.bin.modes import download, prepare | ||
from lhotse.recipes.reazonspeech import ( | ||
REAZONSPEECH, | ||
download_reazonspeech, | ||
prepare_reazonspeech, | ||
) | ||
from lhotse.utils import Pathlike | ||
|
||
__all__ = ["reazonspeech"] | ||
|
||
|
||
@prepare.command(context_settings=dict(show_default=True)) | ||
@click.argument("corpus_dir", type=click.Path(exists=True, dir_okay=True)) | ||
@click.argument("output_dir", type=click.Path()) | ||
@click.option( | ||
"-j", | ||
"--num-jobs", | ||
type=int, | ||
default=1, | ||
help="How many threads to use (can give good speed-ups with slow disks).", | ||
) | ||
def reazonspeech( | ||
corpus_dir: Pathlike, | ||
output_dir: Pathlike, | ||
num_jobs: int, | ||
): | ||
"""ReazonSpeech ASR data preparation.""" | ||
logging.basicConfig(level=logging.INFO) | ||
prepare_reazonspeech(corpus_dir, output_dir=output_dir, num_jobs=num_jobs) | ||
|
||
|
||
@download.command(context_settings=dict(show_default=True)) | ||
@click.argument("target_dir", type=click.Path()) | ||
@click.option( | ||
"--subset", | ||
type=click.Choice(("auto",) + REAZONSPEECH), | ||
multiple=True, | ||
default=["auto"], | ||
help="List of dataset parts to prepare (default: small-v1). To prepare multiple parts, pass each with `--subset` " | ||
"Example: `--subset all", | ||
) | ||
def reazonspeech(target_dir: Pathlike, subset: List[str]): | ||
"""ReazonSpeech download.""" | ||
logging.basicConfig(level=logging.INFO) | ||
if "auto" in subset: | ||
subset = "auto" | ||
download_reazonspeech(target_dir, dataset_parts=subset) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,243 @@ | ||
""" | ||
ReazonSpeech is an open-source dataset that contains a diverse set of natural Japanese speech, | ||
collected from terrestrial television streams. It contains more than 35,000 hours of audio. | ||
The dataset is available on Hugging Face. For more details, please visit: | ||
Dataset: https://huggingface.co/datasets/reazon-research/reazonspeech | ||
Paper: https://research.reazon.jp/_static/reazonspeech_nlp2023.pdf | ||
""" | ||
|
||
import json | ||
import logging | ||
import re | ||
from collections import defaultdict | ||
from pathlib import Path | ||
from typing import Any, Dict, Optional, Sequence, Tuple, Union | ||
|
||
from tqdm.auto import tqdm | ||
|
||
from lhotse import CutSet, fix_manifests, validate_recordings_and_supervisions | ||
from lhotse.audio import Recording, RecordingSet | ||
from lhotse.parallel import parallel_map | ||
from lhotse.recipes.utils import manifests_exist, read_manifests_if_cached | ||
from lhotse.supervision import SupervisionSegment, SupervisionSet | ||
from lhotse.utils import Pathlike, is_module_available | ||
|
||
REAZONSPEECH = ( | ||
"tiny", | ||
"small", | ||
"medium", | ||
"large", | ||
"all", | ||
"small-v1", | ||
"medium-v1", | ||
"all-v1", | ||
) | ||
|
||
PUNCTUATIONS = {ord(x): "" for x in "、。「」『』,,?!!!?!?"} | ||
ZENKAKU = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789" | ||
HANKAKU = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789" | ||
ZEN2HAN = str.maketrans(ZENKAKU, HANKAKU) | ||
|
||
|
||
def normalize(s): | ||
""" | ||
Convert full-width characters to half-width, and remove punctuations. | ||
:param s: str, input string. | ||
:return: str, normalized string. | ||
""" | ||
if is_module_available("num2words"): | ||
import num2words | ||
else: | ||
raise ImportError( | ||
"To process the ReazonSpeech corpus, please install optional dependency: pip install num2words" | ||
) | ||
s = s.translate(PUNCTUATIONS).translate(ZEN2HAN) | ||
conv = lambda m: num2words.num2words(m.group(0), lang="ja") | ||
return re.sub(r"\d+\.?\d*", conv, s) | ||
|
||
|
||
def write_to_json(data, filename): | ||
""" | ||
Writes data to a JSON file. | ||
:param data: The data to write. | ||
:param filename: The name of the file to write to. | ||
""" | ||
|
||
with open(filename, "w", encoding="utf-8") as f: | ||
json.dump(data, f, ensure_ascii=False, indent=4) | ||
|
||
|
||
def download_reazonspeech( | ||
target_dir: Pathlike = ".", | ||
dataset_parts: Optional[Union[str, Sequence[str]]] = "auto", | ||
) -> Path: | ||
""" | ||
Download the ReazonSpeech dataset. | ||
:param target_dir: Pathlike, the path of the dir to storage the dataset. | ||
:param dataset_parts: the parts of the dataset to download (e.g. small, medium, or large). | ||
:return: the path to downloaded data and the JSON file. | ||
""" | ||
if is_module_available("datasets"): | ||
from datasets import load_dataset | ||
else: | ||
raise ImportError( | ||
"To process the ReazonSpeech corpus, please install optional dependency: pip install datasets" | ||
) | ||
target_dir = Path(target_dir) | ||
target_dir.mkdir(parents=True, exist_ok=True) | ||
corpus_dir = target_dir / "ReazonSpeech" | ||
|
||
if dataset_parts == "auto": | ||
dataset_parts = ("small-v1",) | ||
elif isinstance(dataset_parts, str): | ||
dataset_parts = [dataset_parts] | ||
|
||
for part in dataset_parts: | ||
logging.info(f"Downloading ReazonSpeech part: {part}") | ||
ds = load_dataset( | ||
"reazon-research/reazonspeech", | ||
part, | ||
trust_remote_code=True, | ||
cache_dir=corpus_dir, | ||
)["train"] | ||
|
||
# Prepare data for JSON export | ||
data_for_json = [] | ||
idx = 0 | ||
for item in ds: | ||
# Calculate the duration of the audio file | ||
audio_array = item["audio"]["array"] | ||
sampling_rate = item["audio"]["sampling_rate"] | ||
duration = len(audio_array) / float(sampling_rate) | ||
|
||
# Create a dictionary for the current record | ||
record = { | ||
"id": str(idx), | ||
"audio_filepath": item["audio"]["path"], | ||
"text": normalize(item["transcription"]), | ||
"duration": duration, | ||
} | ||
|
||
# Append the record to the list | ||
data_for_json.append(record) | ||
idx += 1 | ||
|
||
# Write data to a JSON file | ||
write_to_json(data_for_json, corpus_dir / "dataset.json") | ||
|
||
return corpus_dir | ||
|
||
|
||
def prepare_reazonspeech( | ||
corpus_dir: Pathlike, | ||
output_dir: Optional[Pathlike], | ||
num_jobs: int = 1, | ||
) -> Dict[str, Dict[str, Union[RecordingSet, SupervisionSet]]]: | ||
""" | ||
Returns the manifests which consist of the Recordings and Supervisions. | ||
When all the manifests are available in the ``output_dir``, it will simply read and return them. | ||
:param corpus_dir: Pathlike, the path of the data dir. | ||
:param output_dir: Pathlike, the path where to write the manifests. | ||
:param num_jobs: int, number of parallel threads used for 'parse_utterance' calls. | ||
:return: a Dict whose key is the dataset part, and the value is Dicts with the keys 'audio' and 'supervisions'. | ||
""" | ||
corpus_dir = Path(corpus_dir) | ||
assert corpus_dir.is_dir(), f"No such directory: {corpus_dir}" | ||
|
||
# Split the dataset into train, dev, and test | ||
with open(corpus_dir / "dataset.json", "r", encoding="utf-8") as file: | ||
full = json.load(file) | ||
dev = full[:1000] | ||
test = full[1000:1100] | ||
train = full[1100:] | ||
|
||
write_to_json(train, corpus_dir / "train.json") | ||
write_to_json(dev, corpus_dir / "dev.json") | ||
write_to_json(test, corpus_dir / "test.json") | ||
|
||
parts = ("train", "dev", "test") | ||
|
||
output_dir = Path(output_dir) | ||
output_dir.mkdir(parents=True, exist_ok=True) | ||
# Maybe some manifests already exist: we can read them and save a bit of preparation time. | ||
manifests = read_manifests_if_cached( | ||
dataset_parts=parts, | ||
output_dir=output_dir, | ||
prefix="reazonspeech", | ||
suffix="jsonl.gz", | ||
lazy=True, | ||
) | ||
|
||
for part in parts: | ||
logging.info(f"Processing ReazonSpeech subset: {part}") | ||
if manifests_exist( | ||
part=part, output_dir=output_dir, prefix="reazonspeech", suffix="jsonl.gz" | ||
): | ||
logging.info(f"ReazonSpeech subset: {part} already prepared - skipping.") | ||
continue | ||
|
||
filename = corpus_dir / f"{part}.json" | ||
with open(filename, "r", encoding="utf-8") as file: | ||
items = json.load(file) | ||
|
||
with RecordingSet.open_writer( | ||
output_dir / f"reazonspeech_recordings_{part}.jsonl.gz" | ||
) as rec_writer, SupervisionSet.open_writer( | ||
output_dir / f"reazonspeech_supervisions_{part}.jsonl.gz" | ||
) as sup_writer, CutSet.open_writer( | ||
output_dir / f"reazonspeech_cuts_{part}.jsonl.gz" | ||
) as cut_writer: | ||
for recording, segment in tqdm( | ||
parallel_map( | ||
parse_utterance, | ||
items, | ||
num_jobs=num_jobs, | ||
), | ||
desc="Processing reazonspeech JSON entries", | ||
): | ||
# Fix and validate the recording + supervisions | ||
recordings, segments = fix_manifests( | ||
recordings=RecordingSet.from_recordings([recording]), | ||
supervisions=SupervisionSet.from_segments([segment]), | ||
) | ||
validate_recordings_and_supervisions( | ||
recordings=recordings, supervisions=segments | ||
) | ||
# Create the cut since most users will need it anyway. | ||
# There will be exactly one cut since there's exactly one recording. | ||
cuts = CutSet.from_manifests( | ||
recordings=recordings, supervisions=segments | ||
) | ||
# Write the manifests | ||
rec_writer.write(recordings[0]) | ||
sup_writer.write(segments[0]) | ||
cut_writer.write(cuts[0]) | ||
|
||
manifests[part] = { | ||
"recordings": RecordingSet.from_jsonl_lazy(rec_writer.path), | ||
"supervisions": SupervisionSet.from_jsonl_lazy(sup_writer.path), | ||
"cuts": CutSet.from_jsonl_lazy(cut_writer.path), | ||
} | ||
|
||
return dict(manifests) | ||
|
||
|
||
def parse_utterance(item: Any) -> Optional[Tuple[Recording, SupervisionSegment]]: | ||
""" | ||
Process a single utterance from the ReazonSpeech dataset. | ||
:param item: The utterance to process. | ||
:return: A tuple containing the Recording and SupervisionSegment. | ||
""" | ||
recording = Recording.from_file(item["audio_filepath"], recording_id=item["id"]) | ||
segments = SupervisionSegment( | ||
id=item["id"], | ||
recording_id=item["id"], | ||
start=0.0, | ||
duration=item["duration"], | ||
channel=0, | ||
language="Japanese", | ||
text=item["text"], | ||
) | ||
return recording, segments |