Skip to content

Commit

Permalink
Recommit "[VPlan] First step towards VPlan cost modeling. (#92555)"
Browse files Browse the repository at this point in the history
This reverts commit 46080ab.

Extra tests have been added in 52d29eb.

Original message:
This adds a new interface to compute the cost of recipes, VPBasicBlocks,
VPRegionBlocks and VPlan, initially falling back to the legacy cost model
for all recipes. Follow-up patches will gradually migrate recipes to
compute their own costs step-by-step.

It also adds getBestPlan function to LVP which computes the cost of all
VPlans and picks the most profitable one together with the most
profitable VF.

The VPlan selected by the VPlan cost model is executed and there is an
assert to catch cases where the VPlan cost model and the legacy cost
model disagree. Even though I checked a number of different build
configurations on AArch64 and X86, there may be some differences
that have been missed.

Additional discussions and context can be found in @arcbbb's
#67647 and
#67934 which is an earlier
version of the current PR.

PR: #92555
  • Loading branch information
fhahn committed Jun 14, 2024
1 parent b650764 commit 90fd99c
Show file tree
Hide file tree
Showing 8 changed files with 414 additions and 27 deletions.
17 changes: 16 additions & 1 deletion llvm/lib/Transforms/Vectorize/LoopVectorizationPlanner.h
Original file line number Diff line number Diff line change
Expand Up @@ -344,6 +344,16 @@ class LoopVectorizationPlanner {
/// A builder used to construct the current plan.
VPBuilder Builder;

/// Computes the cost of \p Plan for vectorization factor \p VF.
///
/// The current implementation requires access to the
/// LoopVectorizationLegality to handle inductions and reductions, which is
/// why it is kept separate from the VPlan-only cost infrastructure.
///
/// TODO: Move to VPlan::cost once the use of LoopVectorizationLegality has
/// been retired.
InstructionCost cost(VPlan &Plan, ElementCount VF) const;

public:
LoopVectorizationPlanner(
Loop *L, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
Expand All @@ -365,6 +375,9 @@ class LoopVectorizationPlanner {
/// Return the best VPlan for \p VF.
VPlan &getBestPlanFor(ElementCount VF) const;

/// Return the most profitable plan and fix its VF to the most profitable one.
VPlan &getBestPlan() const;

/// Generate the IR code for the vectorized loop captured in VPlan \p BestPlan
/// according to the best selected \p VF and \p UF.
///
Expand Down Expand Up @@ -443,7 +456,9 @@ class LoopVectorizationPlanner {
ElementCount MinVF);

/// \return The most profitable vectorization factor and the cost of that VF.
/// This method checks every VF in \p CandidateVFs.
/// This method checks every VF in \p CandidateVFs. This is now only used to
/// verify the decisions by the new VPlan-based cost-model and will be retired
/// once the VPlan-based cost-model is stabilized.
VectorizationFactor
selectVectorizationFactor(const ElementCountSet &CandidateVFs);

Expand Down
222 changes: 200 additions & 22 deletions llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -290,7 +290,7 @@ static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
cl::desc("A flag that overrides the target's max interleave factor for "
"vectorized loops."));

static cl::opt<unsigned> ForceTargetInstructionCost(
cl::opt<unsigned> ForceTargetInstructionCost(
"force-target-instruction-cost", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's expected cost for "
"an instruction to a single constant value. Mostly "
Expand Down Expand Up @@ -412,14 +412,6 @@ static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
}

/// A helper function that returns the reciprocal of the block probability of
/// predicated blocks. If we return X, we are assuming the predicated block
/// will execute once for every X iterations of the loop header.
///
/// TODO: We should use actual block probability here, if available. Currently,
/// we always assume predicated blocks have a 50% chance of executing.
static unsigned getReciprocalPredBlockProb() { return 2; }

/// Returns "best known" trip count for the specified loop \p L as defined by
/// the following procedure:
/// 1) Returns exact trip count if it is known.
Expand Down Expand Up @@ -1621,6 +1613,16 @@ class LoopVectorizationCostModel {
/// \p VF is the vectorization factor chosen for the original loop.
bool isEpilogueVectorizationProfitable(const ElementCount VF) const;

/// Return the cost of instructions in an inloop reduction pattern, if I is
/// part of that pattern.
std::optional<InstructionCost>
getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
TTI::TargetCostKind CostKind) const;

/// Returns the execution time cost of an instruction for a given vector
/// width. Vector width of one means scalar.
VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);

private:
unsigned NumPredStores = 0;

Expand All @@ -1646,21 +1648,11 @@ class LoopVectorizationCostModel {
/// of elements.
ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);

/// Returns the execution time cost of an instruction for a given vector
/// width. Vector width of one means scalar.
VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);

/// The cost-computation logic from getInstructionCost which provides
/// the vector type as an output parameter.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
Type *&VectorTy);

/// Return the cost of instructions in an inloop reduction pattern, if I is
/// part of that pattern.
std::optional<InstructionCost>
getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
TTI::TargetCostKind CostKind) const;

/// Calculate vectorization cost of memory instruction \p I.
InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);

Expand Down Expand Up @@ -7288,7 +7280,10 @@ LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
if (!MaxFactors.hasVector())
return VectorizationFactor::Disabled();

// Select the optimal vectorization factor.
// Select the optimal vectorization factor according to the legacy cost-model.
// This is now only used to verify the decisions by the new VPlan-based
// cost-model and will be retired once the VPlan-based cost-model is
// stabilized.
VectorizationFactor VF = selectVectorizationFactor(VFCandidates);
assert((VF.Width.isScalar() || VF.ScalarCost > 0) && "when vectorizing, the scalar cost must be non-zero.");
if (!hasPlanWithVF(VF.Width)) {
Expand All @@ -7299,6 +7294,182 @@ LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
return VF;
}

InstructionCost VPCostContext::getLegacyCost(Instruction *UI,
ElementCount VF) const {
return CM.getInstructionCost(UI, VF).first;
}

bool VPCostContext::skipCostComputation(Instruction *UI, bool IsVector) const {
return (IsVector && CM.VecValuesToIgnore.contains(UI)) ||
SkipCostComputation.contains(UI);
}

InstructionCost LoopVectorizationPlanner::cost(VPlan &Plan,
ElementCount VF) const {
InstructionCost Cost = 0;
LLVMContext &LLVMCtx = OrigLoop->getHeader()->getContext();
VPCostContext CostCtx(CM.TTI, Legal->getWidestInductionType(), LLVMCtx, CM);

// Cost modeling for inductions is inaccurate in the legacy cost model
// compared to the recipes that are generated. To match here initially during
// VPlan cost model bring up directly use the induction costs from the legacy
// cost model. Note that we do this as pre-processing; the VPlan may not have
// any recipes associated with the original induction increment instruction
// and may replace truncates with VPWidenIntOrFpInductionRecipe. We precompute
// the cost of both induction increment instructions that are represented by
// recipes and those that are not, to avoid distinguishing between them here,
// and skip all recipes that represent induction increments (the former case)
// later on, if they exist, to avoid counting them twice. Similarly we
// pre-compute the cost of any optimized truncates.
// TODO: Switch to more accurate costing based on VPlan.
for (const auto &[IV, IndDesc] : Legal->getInductionVars()) {
Instruction *IVInc = cast<Instruction>(
IV->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
if (CostCtx.SkipCostComputation.insert(IVInc).second) {
InstructionCost InductionCost = CostCtx.getLegacyCost(IVInc, VF);
LLVM_DEBUG({
dbgs() << "Cost of " << InductionCost << " for VF " << VF
<< ":\n induction increment " << *IVInc << "\n";
IVInc->dump();
});
Cost += InductionCost;
}
for (User *U : IV->users()) {
auto *CI = cast<Instruction>(U);
if (!CostCtx.CM.isOptimizableIVTruncate(CI, VF))
continue;
assert(!CostCtx.SkipCostComputation.contains(CI) &&
"Same cast for multiple inductions?");
CostCtx.SkipCostComputation.insert(CI);
InstructionCost CastCost = CostCtx.getLegacyCost(CI, VF);
LLVM_DEBUG({
dbgs() << "Cost of " << CastCost << " for VF " << VF
<< ":\n induction cast " << *CI << "\n";
CI->dump();
});
Cost += CastCost;
}
}

/// Compute the cost of all exiting conditions of the loop using the legacy
/// cost model. This is to match the legacy behavior, which adds the cost of
/// all exit conditions. Note that this over-estimates the cost, as there will
/// be a single condition to control the vector loop.
SmallVector<BasicBlock *> Exiting;
CM.TheLoop->getExitingBlocks(Exiting);
// Add the cost of all exit conditions.
for (BasicBlock *EB : Exiting) {
auto *Term = dyn_cast<BranchInst>(EB->getTerminator());
if (!Term)
continue;
if (auto *CondI = dyn_cast<Instruction>(Term->getOperand(0))) {
assert(!CostCtx.SkipCostComputation.contains(CondI) &&
"Condition already skipped?");
CostCtx.SkipCostComputation.insert(CondI);
Cost += CostCtx.getLegacyCost(CondI, VF);
}
}

// The legacy cost model has special logic to compute the cost of in-loop
// reductions, which may be smaller than the sum of all instructions involved
// in the reduction. For AnyOf reductions, VPlan codegen may remove the select
// which the legacy cost model uses to assign cost. Pre-compute their costs
// for now.
// TODO: Switch to costing based on VPlan once the logic has been ported.
for (const auto &[RedPhi, RdxDesc] : Legal->getReductionVars()) {
if (!CM.isInLoopReduction(RedPhi) &&
!RecurrenceDescriptor::isAnyOfRecurrenceKind(
RdxDesc.getRecurrenceKind()))
continue;

// AnyOf reduction codegen may remove the select. To match the legacy cost
// model, pre-compute the cost for AnyOf reductions here.
if (RecurrenceDescriptor::isAnyOfRecurrenceKind(
RdxDesc.getRecurrenceKind())) {
auto *Select = cast<SelectInst>(*find_if(
RedPhi->users(), [](User *U) { return isa<SelectInst>(U); }));
assert(!CostCtx.SkipCostComputation.contains(Select) &&
"reduction op visited multiple times");
CostCtx.SkipCostComputation.insert(Select);
auto ReductionCost = CostCtx.getLegacyCost(Select, VF);
LLVM_DEBUG(dbgs() << "Cost of " << ReductionCost << " for VF " << VF
<< ":\n any-of reduction " << *Select << "\n");
Cost += ReductionCost;
continue;
}

const auto &ChainOps = RdxDesc.getReductionOpChain(RedPhi, OrigLoop);
SetVector<Instruction *> ChainOpsAndOperands(ChainOps.begin(),
ChainOps.end());
// Also include the operands of instructions in the chain, as the cost-model
// may mark extends as free.
for (auto *ChainOp : ChainOps) {
for (Value *Op : ChainOp->operands()) {
if (auto *I = dyn_cast<Instruction>(Op))
ChainOpsAndOperands.insert(I);
}
}

// Pre-compute the cost for I, if it has a reduction pattern cost.
for (Instruction *I : ChainOpsAndOperands) {
auto ReductionCost = CM.getReductionPatternCost(
I, VF, ToVectorTy(I->getType(), VF), TTI::TCK_RecipThroughput);
if (!ReductionCost)
continue;

assert(!CostCtx.SkipCostComputation.contains(I) &&
"reduction op visited multiple times");
CostCtx.SkipCostComputation.insert(I);
LLVM_DEBUG(dbgs() << "Cost of " << ReductionCost << " for VF " << VF
<< ":\n in-loop reduction " << *I << "\n");
Cost += *ReductionCost;
}
}

// Now compute and add the VPlan-based cost.
Cost += Plan.cost(VF, CostCtx);
LLVM_DEBUG(dbgs() << "Cost for VF " << VF << ": " << Cost << "\n");
return Cost;
}

VPlan &LoopVectorizationPlanner::getBestPlan() const {
// If there is a single VPlan with a single VF, return it directly.
VPlan &FirstPlan = *VPlans[0];
if (VPlans.size() == 1 && size(FirstPlan.vectorFactors()) == 1)
return FirstPlan;

VPlan *BestPlan = &FirstPlan;
ElementCount ScalarVF = ElementCount::getFixed(1);
assert(hasPlanWithVF(ScalarVF) &&
"More than a single plan/VF w/o any plan having scalar VF");

InstructionCost ScalarCost = cost(getBestPlanFor(ScalarVF), ScalarVF);
VectorizationFactor BestFactor(ScalarVF, ScalarCost, ScalarCost);

bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled;
if (ForceVectorization) {
// Ignore scalar width, because the user explicitly wants vectorization.
// Initialize cost to max so that VF = 2 is, at least, chosen during cost
// evaluation.
BestFactor.Cost = InstructionCost::getMax();
}

for (auto &P : VPlans) {
for (ElementCount VF : P->vectorFactors()) {
if (VF.isScalar())
continue;
InstructionCost Cost = cost(*P, VF);
VectorizationFactor CurrentFactor(VF, Cost, ScalarCost);
if (isMoreProfitable(CurrentFactor, BestFactor)) {
BestFactor = CurrentFactor;
BestPlan = &*P;
}
}
}
BestPlan->setVF(BestFactor.Width);
return *BestPlan;
}

VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
assert(count_if(VPlans,
[VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
Expand Down Expand Up @@ -10157,8 +10328,15 @@ bool LoopVectorizePass::processLoop(Loop *L) {
VF.MinProfitableTripCount, IC, &LVL, &CM, BFI,
PSI, Checks);

VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
LVP.executePlan(VF.Width, IC, BestPlan, LB, DT, false);
VPlan &BestPlan = LVP.getBestPlan();
assert(size(BestPlan.vectorFactors()) == 1 &&
"Plan should have a single VF");
ElementCount Width = *BestPlan.vectorFactors().begin();
LLVM_DEBUG(dbgs() << "VF picked by VPlan cost model: " << Width
<< "\n");
assert(VF.Width == Width &&
"VPlan cost model and legacy cost model disagreed");
LVP.executePlan(Width, IC, BestPlan, LB, DT, false);
++LoopsVectorized;

// Add metadata to disable runtime unrolling a scalar loop when there
Expand Down
Loading

0 comments on commit 90fd99c

Please sign in to comment.