Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[FxImporter] Add InputInfo to Resolve Literal Hook #3688

Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions python/torch_mlir/extras/fx_importer.py
Original file line number Diff line number Diff line change
Expand Up @@ -470,7 +470,7 @@ def prepare_module(self, module_op: Operation):
...

def resolve_literal(
self, gni: "GraphNodeImporter", literal: Any
self, gni: "GraphNodeImporter", literal: Any, info: Optional[InputInfo]
) -> Optional[Value]:
"""User overridable hook to resolve a literal value."""
return None
Expand Down Expand Up @@ -1826,13 +1826,13 @@ def _convert_type(
name=op_name, results=[result_type], operands=operands
).result

def _import_literal(self, py_value: Any) -> Value:
def _import_literal(self, py_value: Any, info: Optional[InputInfo] = None) -> Value:
orig_value = None
if isinstance(py_value, torch.Tensor) and py_value.dtype == torch.bool:
orig_value = py_value
py_value = py_value.to(torch.uint8)
# Apply the conversion callback.
user_value = self.fx_importer._hooks.resolve_literal(self, py_value)
user_value = self.fx_importer._hooks.resolve_literal(self, py_value, info)
if user_value is not None:
assert isinstance(user_value, Value)
if orig_value is not None:
Expand Down Expand Up @@ -1866,7 +1866,7 @@ def _import_input(self, py_value: Any, info: InputInfo) -> Value:
raise ValueError(
f"Cannot import {info.input_spec} as a literal because it is mutable"
)
return self._import_literal(py_value)
return self._import_literal(py_value, info)

def _import_scalar_as_tensor(self, loc: Location, arg: NodeArgument) -> Value:
tensor_arg = torch.tensor(arg)
Expand Down
Loading