Skip to content

Commit

Permalink
fix
Browse files Browse the repository at this point in the history
  • Loading branch information
affeldt-aist committed May 25, 2020
1 parent 31f83c2 commit f29b661
Showing 1 changed file with 6 additions and 8 deletions.
14 changes: 6 additions & 8 deletions theories/classical_sets.v
Original file line number Diff line number Diff line change
Expand Up @@ -827,14 +827,14 @@ Variables (d : unit) (T : porderType d).
Implicit Types E : set T.

(* upper bound and lower bound sets. *)
Definition ub E : set T := locked [set z | forall y, E y -> (y <= z)%O].
Definition lb E : set T := locked [set z | forall y, E y -> (z <= y)%O].
Definition ub E : set T := [set z | forall y, E y -> (y <= z)%O].
Definition lb E : set T := [set z | forall y, E y -> (z <= y)%O].

Lemma ubP E x : (forall y, E y -> (y <= x)%O) <-> ub E x.
Proof. by rewrite /ub; unlock. Qed.
Proof. by []. Qed.

Lemma lbP E x : (forall y, E y -> (x <= y)%O) <-> lb E x.
Proof. by rewrite /lb; unlock. Qed.
Proof. by []. Qed.

Lemma ub_set1 x y : ub [set x] y = (x <= y)%O.
Proof.
Expand All @@ -852,7 +852,7 @@ Proof. by move=> Ey /lbP; apply. Qed.

(* down set (i.e., generated order ideal) *)
(* i.e. down E := { x | exists y, y \in E /\ x <= y} *)
Definition down E : set T := locked [set x | exists y, E y /\ (x <= y)%O].
Definition down E : set T := [set x | exists y, E y /\ (x <= y)%O].

(* Real set supremum and infimum existence condition. *)
Definition has_ub E := ub E !=set0.
Expand All @@ -863,9 +863,7 @@ Definition has_inf E := E !=set0 /\ has_lb E.
Lemma has_ub_set1 x : has_ub [set x]. Proof. by exists x; rewrite ub_set1. Qed.

Lemma downP E x : (exists2 y, E y & (x <= y)%O) <-> down E x.
Proof.
by rewrite /down; unlock; split => [[y Ey xy]|[y [Ey xy]]]; [exists y| exists y].
Qed.
Proof. by split => [[y Ey xy]|[y [Ey xy]]]; [exists y| exists y]. Qed.

Definition supremums E := ub E `&` lb (ub E).

Expand Down

0 comments on commit f29b661

Please sign in to comment.