-
Notifications
You must be signed in to change notification settings - Fork 35
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
feat(examples): implicit MAML omniglot example #48
Merged
Benjamin-eecs
merged 4 commits into
metaopt:main
from
Benjamin-eecs:feature/imaml-omniglot
Nov 2, 2022
Merged
Changes from all commits
Commits
Show all changes
4 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
# implicit MAML few-shot Omniglot classification-examples | ||
|
||
Code on implicit MAML few-shot Omniglot classification in paper [Meta-Learning with Implicit Gradients](https://arxiv.org/abs/1909.04630) using TorchOpt. We use `torchopt.sgd` as the inner-loop optimizer. | ||
|
||
## Usage | ||
|
||
```bash | ||
### Run | ||
python3 imaml_omniglot.py --inner_steps 5 | ||
``` | ||
|
||
## Results | ||
|
||
The figure illustrate the experimental result. | ||
|
||
<div align=center> | ||
<img src="./imaml-accs.png" width="800" /> | ||
</div> |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,341 @@ | ||
# Copyright 2022 MetaOPT Team. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
""" | ||
This example shows how to use TorchOpt to do iMAML-GD (see [1] for more details) | ||
for few-shot Omniglot classification. | ||
|
||
[1] Rajeswaran, A., Finn, C., Kakade, S. M., & Levine, S. (2019). | ||
Meta-learning with implicit gradients. In Advances in Neural Information Processing Systems (pp. 113-124). | ||
https://arxiv.org/abs/1909.04630 | ||
""" | ||
|
||
import argparse | ||
import time | ||
|
||
import functorch | ||
import matplotlib as mpl | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import pandas as pd | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import torch.optim as optim | ||
|
||
import torchopt | ||
from torchopt import pytree | ||
|
||
|
||
from support.omniglot_loaders import OmniglotNShot # isort: skip | ||
|
||
|
||
mpl.use('Agg') | ||
plt.style.use('bmh') | ||
|
||
|
||
def main(): | ||
argparser = argparse.ArgumentParser() | ||
argparser.add_argument('--n_way', type=int, help='n way', default=5) | ||
argparser.add_argument('--k_spt', type=int, help='k shot for support set', default=5) | ||
argparser.add_argument('--k_qry', type=int, help='k shot for query set', default=5) | ||
argparser.add_argument('--inner_steps', type=int, help='number of inner steps', default=5) | ||
argparser.add_argument( | ||
'--reg_params', type=float, help='regularization parameters', default=2.0 | ||
) | ||
argparser.add_argument( | ||
'--task_num', type=int, help='meta batch size, namely task num', default=16 | ||
) | ||
argparser.add_argument('--seed', type=int, help='random seed', default=1) | ||
args = argparser.parse_args() | ||
|
||
torch.manual_seed(args.seed) | ||
if torch.cuda.is_available(): | ||
torch.cuda.manual_seed_all(args.seed) | ||
torch.backends.cudnn.benchmark = False | ||
torch.backends.cudnn.deterministic = True | ||
np.random.seed(args.seed) | ||
rng = np.random.default_rng(args.seed) | ||
|
||
# Set up the Omniglot loader. | ||
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') | ||
db = OmniglotNShot( | ||
'/tmp/omniglot-data', | ||
batchsz=args.task_num, | ||
n_way=args.n_way, | ||
k_shot=args.k_spt, | ||
k_query=args.k_qry, | ||
imgsz=28, | ||
rng=rng, | ||
device=device, | ||
) | ||
|
||
# Create a vanilla PyTorch neural network. | ||
net = nn.Sequential( | ||
nn.Conv2d(1, 64, 3), | ||
nn.BatchNorm2d(64, momentum=1.0, affine=True, track_running_stats=False), | ||
nn.ReLU(inplace=False), | ||
nn.MaxPool2d(2, 2), | ||
nn.Conv2d(64, 64, 3), | ||
nn.BatchNorm2d(64, momentum=1.0, affine=True, track_running_stats=False), | ||
nn.ReLU(inplace=False), | ||
nn.MaxPool2d(2, 2), | ||
nn.Conv2d(64, 64, 3), | ||
nn.BatchNorm2d(64, momentum=1.0, affine=True, track_running_stats=False), | ||
nn.ReLU(inplace=False), | ||
nn.MaxPool2d(2, 2), | ||
nn.Flatten(), | ||
nn.Linear(64, args.n_way), | ||
).to(device) | ||
|
||
# We will use Adam to (meta-)optimize the initial parameters | ||
# to be adapted. | ||
net.train() | ||
fnet, params = functorch.make_functional(net) | ||
meta_opt = torchopt.adam(lr=1e-3) | ||
meta_opt_state = meta_opt.init(params) | ||
|
||
log = [] | ||
test(db, [params, fnet], epoch=-1, log=log, args=args) | ||
for epoch in range(10): | ||
meta_opt, meta_opt_state = train( | ||
db, [params, fnet], (meta_opt, meta_opt_state), epoch, log, args | ||
) | ||
test(db, [params, fnet], epoch, log, args) | ||
plot(log) | ||
|
||
|
||
def train(db, net, meta_opt_and_state, epoch, log, args): | ||
n_train_iter = db.x_train.shape[0] // db.batchsz | ||
params, fnet = net | ||
meta_opt, meta_opt_state = meta_opt_and_state | ||
# Given this module we've created, rip out the parameters and buffers | ||
# and return a functional version of the module. `fnet` is stateless | ||
# and can be called with `fnet(params, buffers, args, kwargs)` | ||
# fnet, params, buffers = functorch.make_functional_with_buffers(net) | ||
|
||
for batch_idx in range(n_train_iter): | ||
start_time = time.time() | ||
# Sample a batch of support and query images and labels. | ||
x_spt, y_spt, x_qry, y_qry = db.next() | ||
|
||
task_num, setsz, c_, h, w = x_spt.size() | ||
querysz = x_qry.size(1) | ||
|
||
n_inner_iter = args.inner_steps | ||
reg_param = args.reg_params | ||
qry_losses = [] | ||
qry_accs = [] | ||
|
||
init_params_copy = pytree.tree_map( | ||
lambda t: t.clone().detach_().requires_grad_(requires_grad=t.requires_grad), params | ||
) | ||
|
||
for i in range(task_num): | ||
# Optimize the likelihood of the support set by taking | ||
# gradient steps w.r.t. the model's parameters. | ||
# This adapts the model's meta-parameters to the task. | ||
|
||
optimal_params = train_imaml_inner_solver( | ||
init_params_copy, | ||
params, | ||
(x_spt[i], y_spt[i]), | ||
(fnet, n_inner_iter, reg_param), | ||
) | ||
# The final set of adapted parameters will induce some | ||
# final loss and accuracy on the query dataset. | ||
# These will be used to update the model's meta-parameters. | ||
qry_logits = fnet(optimal_params, x_qry[i]) | ||
qry_loss = F.cross_entropy(qry_logits, y_qry[i]) | ||
# Update the model's meta-parameters to optimize the query | ||
# losses across all of the tasks sampled in this batch. | ||
# qry_loss = qry_loss / task_num # scale gradients | ||
meta_grads = torch.autograd.grad(qry_loss / task_num, params) | ||
meta_updates, meta_opt_state = meta_opt.update(meta_grads, meta_opt_state) | ||
params = torchopt.apply_updates(params, meta_updates) | ||
qry_acc = (qry_logits.argmax(dim=1) == y_qry[i]).sum().item() / querysz | ||
|
||
qry_losses.append(qry_loss.detach()) | ||
qry_accs.append(qry_acc) | ||
|
||
qry_losses = sum(qry_losses) / task_num | ||
qry_accs = 100.0 * sum(qry_accs) / task_num | ||
i = epoch + float(batch_idx) / n_train_iter | ||
iter_time = time.time() - start_time | ||
|
||
print( | ||
f'[Epoch {i:.2f}] Train Loss: {qry_losses:.2f} | Acc: {qry_accs:.2f} | Time: {iter_time:.2f}' | ||
) | ||
|
||
log.append( | ||
{ | ||
'epoch': i, | ||
'loss': qry_losses, | ||
'acc': qry_accs, | ||
'mode': 'train', | ||
'time': time.time(), | ||
} | ||
) | ||
|
||
return (meta_opt, meta_opt_state) | ||
|
||
|
||
def test(db, net, epoch, log, args): | ||
# Crucially in our testing procedure here, we do *not* fine-tune | ||
# the model during testing for simplicity. | ||
# Most research papers using MAML for this task do an extra | ||
# stage of fine-tuning here that should be added if you are | ||
# adapting this code for research. | ||
params, fnet = net | ||
# fnet, params, buffers = functorch.make_functional_with_buffers(net) | ||
n_test_iter = db.x_test.shape[0] // db.batchsz | ||
|
||
qry_losses = [] | ||
qry_accs = [] | ||
|
||
# TODO: Maybe pull this out into a separate module so it | ||
# doesn't have to be duplicated between `train` and `test`? | ||
n_inner_iter = args.inner_steps | ||
reg_param = args.reg_params | ||
init_params_copy = pytree.tree_map( | ||
lambda t: t.clone().detach_().requires_grad_(requires_grad=t.requires_grad), params | ||
) | ||
|
||
for batch_idx in range(n_test_iter): | ||
x_spt, y_spt, x_qry, y_qry = db.next('test') | ||
|
||
task_num, setsz, c_, h, w = x_spt.size() | ||
querysz = x_qry.size(1) | ||
|
||
for i in range(task_num): | ||
# Optimize the likelihood of the support set by taking | ||
# gradient steps w.r.t. the model's parameters. | ||
# This adapts the model's meta-parameters to the task. | ||
|
||
optimal_params = test_imaml_inner_solver( | ||
init_params_copy, | ||
params, | ||
(x_spt[i], y_spt[i]), | ||
(fnet, n_inner_iter, reg_param), | ||
) | ||
|
||
# The query loss and acc induced by these parameters. | ||
qry_logits = fnet(optimal_params, x_qry[i]) | ||
qry_loss = F.cross_entropy(qry_logits, y_qry[i], reduction='none') | ||
qry_losses.append(qry_loss.detach()) | ||
qry_accs.append((qry_logits.argmax(dim=1) == y_qry[i]).detach()) | ||
|
||
qry_losses = torch.cat(qry_losses).mean().item() | ||
qry_accs = 100.0 * torch.cat(qry_accs).float().mean().item() | ||
print(f'[Epoch {epoch+1:.2f}] Test Loss: {qry_losses:.2f} | Acc: {qry_accs:.2f}') | ||
log.append( | ||
{ | ||
'epoch': epoch + 1, | ||
'loss': qry_losses, | ||
'acc': qry_accs, | ||
'mode': 'test', | ||
'time': time.time(), | ||
} | ||
) | ||
|
||
|
||
def imaml_objective(optimal_params, init_params, data, aux): | ||
x_spt, y_spt = data | ||
fnet, n_inner_iter, reg_param = aux | ||
fnet.eval() | ||
y_pred = fnet(optimal_params, x_spt) | ||
fnet.train() | ||
regularization_loss = 0 | ||
for p1, p2 in zip(optimal_params, init_params): | ||
regularization_loss += 0.5 * reg_param * torch.sum(torch.square(p1 - p2)) | ||
loss = F.cross_entropy(y_pred, y_spt) + regularization_loss | ||
return loss | ||
|
||
|
||
@torchopt.diff.implicit.custom_root( | ||
functorch.grad(imaml_objective, argnums=0), | ||
argnums=1, | ||
has_aux=False, | ||
solve=torchopt.linear_solve.solve_normal_cg(maxiter=5, atol=0), | ||
) | ||
def train_imaml_inner_solver(init_params_copy, init_params, data, aux): | ||
x_spt, y_spt = data | ||
fnet, n_inner_iter, reg_param = aux | ||
# Initial functional optimizer based on TorchOpt | ||
params = init_params_copy | ||
inner_opt = torchopt.sgd(lr=1e-1) | ||
inner_opt_state = inner_opt.init(params) | ||
with torch.enable_grad(): | ||
# Temporarily enable gradient computation for conducting the optimization | ||
for _ in range(n_inner_iter): | ||
pred = fnet(params, x_spt) | ||
loss = F.cross_entropy(pred, y_spt) # compute loss | ||
# Compute regularization loss | ||
regularization_loss = 0 | ||
for p1, p2 in zip(params, init_params): | ||
regularization_loss += 0.5 * reg_param * torch.sum(torch.square(p1 - p2)) | ||
final_loss = loss + regularization_loss | ||
grads = torch.autograd.grad(final_loss, params) # compute gradients | ||
updates, inner_opt_state = inner_opt.update(grads, inner_opt_state) # get updates | ||
params = torchopt.apply_updates(params, updates) | ||
return params | ||
|
||
|
||
def test_imaml_inner_solver(init_params_copy, init_params, data, aux): | ||
x_spt, y_spt = data | ||
fnet, n_inner_iter, reg_param = aux | ||
# Initial functional optimizer based on TorchOpt | ||
params = init_params_copy | ||
inner_opt = torchopt.sgd(lr=1e-1) | ||
inner_opt_state = inner_opt.init(params) | ||
with torch.enable_grad(): | ||
# Temporarily enable gradient computation for conducting the optimization | ||
for _ in range(n_inner_iter): | ||
pred = fnet(params, x_spt) | ||
loss = F.cross_entropy(pred, y_spt) # compute loss | ||
# Compute regularization loss | ||
regularization_loss = 0 | ||
for p1, p2 in zip(params, init_params): | ||
regularization_loss += 0.5 * reg_param * torch.sum(torch.square(p1 - p2)) | ||
final_loss = loss + regularization_loss | ||
grads = torch.autograd.grad(final_loss, params) # compute gradients | ||
updates, inner_opt_state = inner_opt.update(grads, inner_opt_state) # get updates | ||
params = torchopt.apply_updates(params, updates) | ||
return params | ||
|
||
|
||
def plot(log): | ||
# Generally you should pull your plotting code out of your training | ||
# script but we are doing it here for brevity. | ||
df = pd.DataFrame(log) | ||
|
||
fig, ax = plt.subplots(figsize=(8, 4), dpi=250) | ||
train_df = df[df['mode'] == 'train'] | ||
test_df = df[df['mode'] == 'test'] | ||
ax.plot(train_df['epoch'], train_df['acc'], label='Train') | ||
ax.plot(test_df['epoch'], test_df['acc'], label='Test') | ||
ax.set_xlabel('Epoch') | ||
ax.set_ylabel('Accuracy') | ||
ax.set_ylim(80, 100) | ||
ax.set_title('iMAML Omniglot') | ||
ax.legend(ncol=2, loc='lower right') | ||
fig.tight_layout() | ||
fname = 'imaml-accs.png' | ||
print(f'--- Plotting accuracy to {fname}') | ||
fig.savefig(fname) | ||
plt.close(fig) | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
要不直接复用train_imaml_inner_solver,test的时候再加个torch.no_grad好了,免得冗余