Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding the RwandaFieldBoundary dataset #1574

Merged
merged 9 commits into from
Sep 29, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions docs/api/datasets.rst
Original file line number Diff line number Diff line change
Expand Up @@ -297,6 +297,11 @@ RESISC45

.. autoclass:: RESISC45

Rwanda Field Boundary
^^^^^^^^^^^^^^^^^^^^^

.. autoclass:: RwandaFieldBoundary

Seasonal Contrast
^^^^^^^^^^^^^^^^^

Expand Down
1 change: 1 addition & 0 deletions docs/api/non_geo_datasets.csv
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@ Dataset,Task,Source,# Samples,# Classes,Size (px),Resolution (m),Bands
`Potsdam`_,S,Aerial,38,6,"6,000x6,000",0.05,MSI
`ReforesTree`_,"OD, R",Aerial,100,6,"4,000x4,000",0.02,RGB
`RESISC45`_,C,Google Earth,"31,500",45,256x256,0.2--30,RGB
`Rwanda Field Boundary`_,S,Planetscope,70,2,256x256,4.7,RGB + NIR
`Seasonal Contrast`_,T,Sentinel-2,100K--1M,-,264x264,10,MSI
`SeasoNet`_,S,Sentinel-2,"1,759,830",33,120x120,10,MSI
`SEN12MS`_,S,"Sentinel-1/2, MODIS","180,662",33,256x256,10,"SAR, MSI"
Expand Down
101 changes: 101 additions & 0 deletions tests/data/rwanda_field_boundary/data.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
#!/usr/bin/env python3

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

import hashlib
import os
import shutil

import numpy as np
import rasterio

dates = ("2021_03", "2021_04", "2021_08", "2021_10", "2021_11", "2021_12")
all_bands = ("B01", "B02", "B03", "B04")

SIZE = 32
NUM_SAMPLES = 5
np.random.seed(0)


def create_mask(fn: str) -> None:
profile = {
"driver": "GTiff",
"dtype": "uint8",
"nodata": 0.0,
"width": SIZE,
"height": SIZE,
"count": 1,
"crs": "epsg:3857",
"compress": "lzw",
"predictor": 2,
"transform": rasterio.Affine(10.0, 0.0, 0.0, 0.0, -10.0, 0.0),
"blockysize": 32,
"tiled": False,
"interleave": "band",
}
with rasterio.open(fn, "w", **profile) as f:
f.write(np.random.randint(0, 2, size=(SIZE, SIZE), dtype=np.uint8), 1)


def create_img(fn: str) -> None:
profile = {
"driver": "GTiff",
"dtype": "uint16",
"nodata": 0.0,
"width": SIZE,
"height": SIZE,
"count": 1,
"crs": "epsg:3857",
"compress": "lzw",
"predictor": 2,
"blockysize": 16,
"transform": rasterio.Affine(10.0, 0.0, 0.0, 0.0, -10.0, 0.0),
"tiled": False,
"interleave": "band",
}
with rasterio.open(fn, "w", **profile) as f:
f.write(np.random.randint(0, 2, size=(SIZE, SIZE), dtype=np.uint16), 1)


if __name__ == "__main__":
# Train and test images
for split in ("train", "test"):
for i in range(NUM_SAMPLES):
for date in dates:
directory = os.path.join(
f"nasa_rwanda_field_boundary_competition_source_{split}",
f"nasa_rwanda_field_boundary_competition_source_{split}_{i:02d}_{date}", # noqa: E501
)
os.makedirs(directory, exist_ok=True)
for band in all_bands:
create_img(os.path.join(directory, f"{band}.tif"))

# Create collections.json, this isn't used by the dataset but is checked to
# exist
with open(
f"nasa_rwanda_field_boundary_competition_source_{split}/collections.json",
"w",
) as f:
f.write("Not used")

# Train labels
for i in range(NUM_SAMPLES):
directory = os.path.join(
"nasa_rwanda_field_boundary_competition_labels_train",
f"nasa_rwanda_field_boundary_competition_labels_train_{i:02d}",
)
os.makedirs(directory, exist_ok=True)
create_mask(os.path.join(directory, "raster_labels.tif"))

# Create directories and compute checksums
for filename in [
"nasa_rwanda_field_boundary_competition_source_train",
"nasa_rwanda_field_boundary_competition_source_test",
"nasa_rwanda_field_boundary_competition_labels_train",
]:
shutil.make_archive(filename, "gztar", ".", filename)
# Compute checksums
with open(f"{filename}.tar.gz", "rb") as f:
md5 = hashlib.md5(f.read()).hexdigest()
print(f"{filename}: {md5}")
Binary file not shown.
Binary file not shown.
Binary file not shown.
140 changes: 140 additions & 0 deletions tests/datasets/test_rwanda_field_boundary.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,140 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

import glob
import os
import shutil
from pathlib import Path

import matplotlib.pyplot as plt
import pytest
import torch
import torch.nn as nn
from _pytest.fixtures import SubRequest
from pytest import MonkeyPatch
from torch.utils.data import ConcatDataset

from torchgeo.datasets import RwandaFieldBoundary


class Collection:
def download(self, output_dir: str, **kwargs: str) -> None:
glob_path = os.path.join("tests", "data", "rwanda_field_boundary", "*.tar.gz")
for tarball in glob.iglob(glob_path):
shutil.copy(tarball, output_dir)


def fetch(dataset_id: str, **kwargs: str) -> Collection:
return Collection()


class TestRwandaFieldBoundary:
@pytest.fixture(params=["train", "test"])
def dataset(
self, monkeypatch: MonkeyPatch, tmp_path: Path, request: SubRequest
) -> RwandaFieldBoundary:
radiant_mlhub = pytest.importorskip("radiant_mlhub", minversion="0.3")
monkeypatch.setattr(radiant_mlhub.Collection, "fetch", fetch)
monkeypatch.setattr(
RwandaFieldBoundary, "number_of_patches_per_split", {"train": 5, "test": 5}
)
monkeypatch.setattr(
RwandaFieldBoundary,
"md5s",
{
"train_images": "af9395e2e49deefebb35fa65fa378ba3",
"test_images": "d104bb82323a39e7c3b3b7dd0156f550",
"train_labels": "6cceaf16a141cf73179253a783e7d51b",
},
)

root = str(tmp_path)
split = request.param
transforms = nn.Identity()
return RwandaFieldBoundary(
root, split, transforms=transforms, api_key="", download=True, checksum=True
)

def test_getitem(self, dataset: RwandaFieldBoundary) -> None:
x = dataset[0]
assert isinstance(x, dict)
assert isinstance(x["image"], torch.Tensor)
if dataset.split == "train":
assert isinstance(x["mask"], torch.Tensor)
else:
assert "mask" not in x

def test_len(self, dataset: RwandaFieldBoundary) -> None:
assert len(dataset) == 5

def test_add(self, dataset: RwandaFieldBoundary) -> None:
ds = dataset + dataset
assert isinstance(ds, ConcatDataset)
assert len(ds) == 10

def test_needs_extraction(self, tmp_path: Path) -> None:
root = str(tmp_path)
for fn in [
"nasa_rwanda_field_boundary_competition_source_train.tar.gz",
"nasa_rwanda_field_boundary_competition_source_test.tar.gz",
"nasa_rwanda_field_boundary_competition_labels_train.tar.gz",
]:
url = os.path.join("tests", "data", "rwanda_field_boundary", fn)
shutil.copy(url, root)
RwandaFieldBoundary(root, checksum=False)

def test_already_downloaded(self, dataset: RwandaFieldBoundary) -> None:
RwandaFieldBoundary(root=dataset.root)

def test_not_downloaded(self, tmp_path: Path) -> None:
with pytest.raises(RuntimeError, match="Dataset not found in"):
RwandaFieldBoundary(str(tmp_path))

def test_corrupted(self, tmp_path: Path) -> None:
for fn in [
"nasa_rwanda_field_boundary_competition_source_train.tar.gz",
"nasa_rwanda_field_boundary_competition_source_test.tar.gz",
"nasa_rwanda_field_boundary_competition_labels_train.tar.gz",
]:
with open(os.path.join(tmp_path, fn), "w") as f:
f.write("bad")
with pytest.raises(RuntimeError, match="Dataset found, but corrupted."):
RwandaFieldBoundary(root=str(tmp_path), checksum=True)

def test_failed_download(self, monkeypatch: MonkeyPatch, tmp_path: Path) -> None:
adamjstewart marked this conversation as resolved.
Show resolved Hide resolved
radiant_mlhub = pytest.importorskip("radiant_mlhub", minversion="0.3")
monkeypatch.setattr(radiant_mlhub.Collection, "fetch", fetch)
monkeypatch.setattr(
RwandaFieldBoundary,
"md5s",
{"train_images": "bad", "test_images": "bad", "train_labels": "bad"},
)
root = str(tmp_path)
with pytest.raises(RuntimeError, match="Dataset not found or corrupted."):
RwandaFieldBoundary(root, "train", api_key="", download=True, checksum=True)

def test_no_api_key(self, tmp_path: Path) -> None:
with pytest.raises(RuntimeError, match="Must provide an API key to download"):
RwandaFieldBoundary(str(tmp_path), api_key=None, download=True)

def test_invalid_bands(self) -> None:
with pytest.raises(ValueError, match="is an invalid band name."):
RwandaFieldBoundary(bands=("foo", "bar"))

def test_plot(self, dataset: RwandaFieldBoundary) -> None:
x = dataset[0].copy()
dataset.plot(x, suptitle="Test")
plt.close()
dataset.plot(x, show_titles=False)
plt.close()

if dataset.split == "train":
x["prediction"] = x["mask"].clone()
dataset.plot(x)
plt.close()

def test_failed_plot(self, dataset: RwandaFieldBoundary) -> None:
single_band_dataset = RwandaFieldBoundary(root=dataset.root, bands=("B01",))
with pytest.raises(ValueError, match="Dataset doesn't contain"):
x = single_band_dataset[0].copy()
single_band_dataset.plot(x, suptitle="Test")
2 changes: 2 additions & 0 deletions torchgeo/datasets/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,6 +83,7 @@
from .potsdam import Potsdam2D
from .reforestree import ReforesTree
from .resisc45 import RESISC45
from .rwanda_field_boundary import RwandaFieldBoundary
from .seasonet import SeasoNet
from .seco import SeasonalContrastS2
from .sen12ms import SEN12MS
Expand Down Expand Up @@ -201,6 +202,7 @@
"Potsdam2D",
"RESISC45",
"ReforesTree",
"RwandaFieldBoundary",
"SeasonalContrastS2",
"SeasoNet",
"SEN12MS",
Expand Down
Loading