Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Spacenet 4 #185

Merged
merged 7 commits into from
Oct 12, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/api/datasets.rst
Original file line number Diff line number Diff line change
Expand Up @@ -143,6 +143,7 @@ SpaceNet
.. autoclass:: SpaceNet
.. autoclass:: SpaceNet1
.. autoclass:: SpaceNet2
.. autoclass:: SpaceNet4

Tropical Cyclone Wind Estimation Competition
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Expand Down
Binary file added tests/data/spacenet/sn4_AOI_6_Atlanta.tar.gz
Binary file not shown.
66 changes: 65 additions & 1 deletion tests/datasets/test_spacenet.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
from _pytest.fixtures import SubRequest
from _pytest.monkeypatch import MonkeyPatch

from torchgeo.datasets import SpaceNet1, SpaceNet2
from torchgeo.datasets import SpaceNet1, SpaceNet2, SpaceNet4
from torchgeo.transforms import Identity

TEST_DATA_DIR = "tests/data/spacenet"
Expand Down Expand Up @@ -141,3 +141,67 @@ def test_collection_checksum(self, dataset: SpaceNet2) -> None:
dataset.collection_md5_dict["sn2_AOI_2_Vegas"] = "randommd5hash123"
with pytest.raises(RuntimeError, match="Collection sn2_AOI_2_Vegas corrupted"):
SpaceNet2(root=dataset.root, download=True, checksum=True)


class TestSpaceNet4:
@pytest.fixture(params=["PAN", "MS", "PS-RGBNIR"])
def dataset(
self,
request: SubRequest,
monkeypatch: Generator[MonkeyPatch, None, None],
tmp_path: Path,
) -> SpaceNet4:
radiant_mlhub = pytest.importorskip("radiant_mlhub", minversion="0.2.1")
monkeypatch.setattr( # type: ignore[attr-defined]
radiant_mlhub.Collection, "fetch", fetch_collection
)
test_md5 = {
"sn4_AOI_6_Atlanta": "ea37c2d87e2c3a1d8b2a7c2230080d46",
}

test_angles = ["nadir", "off-nadir", "very-off-nadir"]

monkeypatch.setattr( # type: ignore[attr-defined]
SpaceNet4, "collection_md5_dict", test_md5
)
root = str(tmp_path)
transforms = Identity()
return SpaceNet4(
root,
image=request.param,
angles=test_angles,
transforms=transforms,
download=True,
api_key="",
)

def test_getitem(self, dataset: SpaceNet4) -> None:
# Get image-label pair with empty label to
# enusre coverage
x = dataset[2]
assert isinstance(x, dict)
assert isinstance(x["image"], torch.Tensor)
assert isinstance(x["mask"], torch.Tensor)
if dataset.image == "PS-RGBNIR":
assert x["image"].shape[0] == 4
elif dataset.image == "MS":
assert x["image"].shape[0] == 8
else:
assert x["image"].shape[0] == 1

def test_len(self, dataset: SpaceNet4) -> None:
assert len(dataset) == 4

def test_already_downloaded(self, dataset: SpaceNet4) -> None:
SpaceNet4(root=dataset.root, download=True)

def test_not_downloaded(self, tmp_path: Path) -> None:
with pytest.raises(RuntimeError, match="Dataset not found"):
SpaceNet4(str(tmp_path))

def test_collection_checksum(self, dataset: SpaceNet4) -> None:
dataset.collection_md5_dict["sn4_AOI_6_Atlanta"] = "randommd5hash123"
with pytest.raises(
RuntimeError, match="Collection sn4_AOI_6_Atlanta corrupted"
):
SpaceNet4(root=dataset.root, download=True, checksum=True)
3 changes: 2 additions & 1 deletion torchgeo/datasets/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,7 @@
from .sen12ms import SEN12MS
from .sentinel import Sentinel, Sentinel2
from .so2sat import So2Sat
from .spacenet import SpaceNet, SpaceNet1, SpaceNet2
from .spacenet import SpaceNet, SpaceNet1, SpaceNet2, SpaceNet4
from .ucmerced import UCMerced
from .utils import BoundingBox, collate_dict
from .zuericrop import ZueriCrop
Expand Down Expand Up @@ -109,6 +109,7 @@
"SpaceNet",
"SpaceNet1",
"SpaceNet2",
"SpaceNet4",
"TropicalCycloneWindEstimation",
"UCMerced",
"VHR10",
Expand Down
186 changes: 184 additions & 2 deletions torchgeo/datasets/spacenet.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
import rasterio as rio
import torch
from affine import Affine
from fiona.errors import FionaValueError
from rasterio.features import rasterize
from torch import Tensor

Expand Down Expand Up @@ -154,8 +155,11 @@ def _load_mask(self, path: str, tfm: Affine, shape: Tuple[int, int]) -> Tensor:
Returns:
Tensor: label tensor
"""
with fiona.open(path) as src:
labels = [feature["geometry"] for feature in src]
try:
with fiona.open(path) as src:
labels = [feature["geometry"] for feature in src]
except FionaValueError:
labels = []

if not labels:
mask_data = np.zeros(shape=shape)
Expand Down Expand Up @@ -490,3 +494,181 @@ def _load_files(self, root: str) -> List[Dict[str, str]]:
)
files.append({"image_path": imgpath, "label_path": lbl_path})
return files


class SpaceNet4(SpaceNet):
"""SpaceNet 4: Off-Nadir Buildings Dataset.

`SpaceNet 4 <https://spacenet.ai/off-nadir-building-detection/>`_ is a
dataset of 27 WV2 imagery captured at varying off-nadir angles and
associated building footprints over the city of Atlanta. The off-nadir angle
ranges from 7 degrees to 54 degrees.


Dataset features

* No. of chipped images: 28,728 (PAN/MS/PS-RGBNIR)
* No. of label files: 1064
* No. of building footprints: >120,000
* Area Coverage: 665 sq km
* Chip size: 225 x 225 (MS), 900 x 900 (PAN/PS-RGBNIR)

Dataset format

* Imagery - Worldview-3 GeoTIFFs
* PAN.tif (Panchromatic)
* MS.tif (Multispectral)
* PS-RGBNIR (Pansharpened RGBNIR)
* Labels - GeoJSON
* labels.geojson

If you use this dataset in your research, please cite the following paper:

* https://arxiv.org/abs/1903.12239

.. note::

This dataset requires the following additional library to be installed:

* `radiant-mlhub <https://pypi.org/project/radiant-mlhub/>`_ to download the
imagery and labels from the Radiant Earth MLHub

"""

dataset_id = "spacenet4"
collection_md5_dict = {
"sn4_AOI_6_Atlanta": "c597d639cba5257927a97e3eff07b753",
}

imagery = {
"MS": "MS.tif",
"PAN": "PAN.tif",
"PS-RGBNIR": "PS-RGBNIR.tif",
}
chip_size = {
"MS": (225, 225),
"PAN": (900, 900),
"PS-RGBNIR": (900, 900),
}
label_glob = "labels.geojson"

angle_catalog_map = {
"nadir": [
"1030010003D22F00",
"10300100023BC100",
"1030010003993E00",
"1030010003CAF100",
"1030010002B7D800",
"10300100039AB000",
"1030010002649200",
"1030010003C92000",
"1030010003127500",
"103001000352C200",
"103001000307D800",
],
"off-nadir": [
"1030010003472200",
"1030010003315300",
"10300100036D5200",
"103001000392F600",
"1030010003697400",
"1030010003895500",
"1030010003832800",
],
"very-off-nadir": [
"10300100035D1B00",
"1030010003CCD700",
"1030010003713C00",
"10300100033C5200",
"1030010003492700",
"10300100039E6200",
"1030010003BDDC00",
"1030010003CD4300",
"1030010003193D00",
],
}

def __init__(
self,
root: str,
image: str = "PS-RGBNIR",
angles: List[str] = [],
transforms: Optional[Callable[[Dict[str, Any]], Dict[str, Any]]] = None,
download: bool = False,
api_key: Optional[str] = None,
checksum: bool = False,
) -> None:
"""Initialize a new SpaceNet 4 Dataset instance.

Args:
root: root directory where dataset can be found
image: image selection which must be in ["MS", "PAN", "PS-RGBNIR"]
angles: angle selection which must be in ["nadir", "off-nadir",
"very-off-nadir"]
transforms: a function/transform that takes input sample and its target as
entry and returns a transformed version
download: if True, download dataset and store it in the root directory.
api_key: a RadiantEarth MLHub API key to use for downloading the dataset
checksum: if True, check the MD5 of the downloaded files (may be slow)

Raises:
RuntimeError: if ``download=False`` but dataset is missing
"""
collections = ["sn4_AOI_6_Atlanta"]
assert image in {"MS", "PAN", "PS-RGBNIR"}
self.angles = angles
if self.angles:
for angle in self.angles:
assert angle in self.angle_catalog_map.keys()
super().__init__(
root, image, collections, transforms, download, api_key, checksum
)

def _load_files(self, root: str) -> List[Dict[str, str]]:
"""Return the paths of the files in the dataset.

Args:
root: root dir of dataset

Returns:
list of dicts containing paths for each pair of image and label
"""
files = []
nadir = []
offnadir = []
veryoffnadir = []
images = glob.glob(os.path.join(root, self.collections[0], "*", self.filename))
images = sorted(images)

catalog_id_pattern = re.compile(r"(_[A-Z0-9])\w+$")
for imgpath in images:
imgdir = os.path.basename(os.path.dirname(imgpath))
match = catalog_id_pattern.search(imgdir)
assert match is not None, "Invalid image directory"
catalog_id = match.group()[1:]

lbl_dir = os.path.dirname(imgpath).split("-nadir")[0]

lbl_path = os.path.join(lbl_dir + "-labels", self.label_glob)
assert os.path.exists(lbl_path)

_file = {"image_path": imgpath, "label_path": lbl_path}
if catalog_id in self.angle_catalog_map["very-off-nadir"]:
veryoffnadir.append(_file)
elif catalog_id in self.angle_catalog_map["off-nadir"]:
offnadir.append(_file)
elif catalog_id in self.angle_catalog_map["nadir"]:
nadir.append(_file)

angle_file_map = {
"nadir": nadir,
"off-nadir": offnadir,
"very-off-nadir": veryoffnadir,
}

if not self.angles:
files.extend(nadir + offnadir + veryoffnadir)
else:
for angle in self.angles:
files.extend(angle_file_map[angle])
return files