You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
============================= test session starts ==============================
platform linux -- Python 3.12.3, pytest-8.3.2, pluggy-1.5.0 -- /home/adas/mljar/mljar-supervised/venv/bin/python3
cachedir: .pytest_cache
rootdir: /home/adas/mljar/mljar-supervised
configfile: pytest.ini
plugins: cov-5.0.0
collecting ... collected 1 item
tests/tests_automl/test_targets.py::AutoMLTargetsTest::test_bin_class_AB_missing_targets FAILED
=================================== FAILURES ===================================
_____________ AutoMLTargetsTest.test_bin_class_AB_missing_targets ______________
self = <tests.tests_automl.test_targets.AutoMLTargetsTest testMethod=test_bin_class_AB_missing_targets>
def test_bin_class_AB_missing_targets(self):
X = np.random.rand(self.rows, 3)
X = pd.DataFrame(X, columns=[f"f{i}" for i in range(3)])
y = pd.Series(
np.random.permutation(["a", "B"] * int(self.rows / 2)), name="target"
)
y.iloc[1] = None
y.iloc[3] = np.NaN
y.iloc[13] = np.nan
automl = AutoML(
results_path=self.automl_dir,
total_time_limit=1,
algorithms=["Xgboost"],
train_ensemble=False,
explain_level=0,
start_random_models=1,
)
> automl.fit(X, y)
tests/tests_automl/test_targets.py:106:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
supervised/automl.py:432: in fit
return self._fit(X, y, sample_weight, cv, sensitive_features)
supervised/base_automl.py:967: in _fit
X, y, sample_weight, sensitive_features = self._build_dataframe(
supervised/base_automl.py:789: in _build_dataframe
X, y, sample_weight, sensitive_features = ExcludeRowsMissingTarget.transform(
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
X = f0 f1 f2
0 0.219718 0.578841 0.536912
1 0.382829 0.145900 0.430932
2 0.155678 0.482... 0.258146 0.325605
47 0.425501 0.771115 0.633187
48 0.189009 0.472929 0.558061
49 0.760685 0.277196 0.985700
y = 0 B
1 None
2 a
3 NaN
4 a
5 a
6 B
7 B
8 B
9 B
10 ... B
42 a
43 a
44 B
45 a
46 B
47 a
48 a
49 a
Name: target, dtype: object
sample_weight = None, sensitive_features = None, warn = True
@staticmethod
def transform(
X=None, y=None, sample_weight=None, sensitive_features=None, warn=False
):
if y is None:
return X, y, sample_weight, sensitive_features
y_missing = pd.isnull(y)
if np.sum(np.array(y_missing)) == 0:
return X, y, sample_weight, sensitive_features
logger.debug("Exclude rows with missing target values")
if warn:
> warnings.warn(
"There are samples with missing target values in the data which will be excluded for further analysis"
)
E UserWarning: There are samples with missing target values in the data which will be excluded for further analysis
supervised/preprocessing/exclude_missing_target.py:25: UserWarning
=========================== short test summary info ============================
FAILED tests/tests_automl/test_targets.py::AutoMLTargetsTest::test_bin_class_AB_missing_targets
============================== 1 failed in 1.92s ===============================
The text was updated successfully, but these errors were encountered:
a-szulc
changed the title
warning in test: tests/tests_automl/test_targets.py::AutoMLTargetsTest::test_bin_class_AB_missing_targets
user warning in test: tests/tests_automl/test_targets.py::AutoMLTargetsTest::test_bin_class_AB_missing_targets
Aug 23, 2024
The text was updated successfully, but these errors were encountered: