forked from Tencent/ncnn
-
Notifications
You must be signed in to change notification settings - Fork 18
Home
nihuini edited this page Sep 2, 2019
·
2 revisions
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include "net.h"
int main()
{
cv::Mat img = cv::imread("image.ppm", CV_LOAD_IMAGE_GRAYSCALE);
int w = img.cols;
int h = img.rows;
// subtract 128, norm to -1 ~ 1
ncnn::Mat in = ncnn::Mat::from_pixels_resize(img.data, ncnn::Mat::PIXEL_GRAY, w, h, 60, 60);
float mean[1] = { 128.f };
float norm[1] = { 1/128.f };
in.substract_mean_normalize(mean, norm);
ncnn::Net net;
net.load_param("model.param");
net.load_model("model.bin");
ncnn::Extractor ex = net.create_extractor();
ex.set_light_mode(true);
ex.set_num_threads(4);
ex.input("data", in);
ncnn::Mat feat;
ex.extract("output", feat);
return 0;
}
void pretty_print(const Mat& m)
{
for (int q=0; q<m.c; q++)
{
const float* ptr = m.channel(q);
for (int y=0; y<m.h; y++)
{
for (int x=0; x<m.w; x++)
{
printf("%f ", ptr[x]);
}
ptr += m.w;
printf("\n");
}
printf("------------------------\n");
}
}
use squeezenet v1.1, nexus6p, android 7.1.2
memory usage is the RSS item in top utility output
compare item | caffe-android-lib+openblas | ncnn |
---|---|---|
inference time(1 thread) | 228ms | 88ms |
inference time(8 thread) | 152ms | 38ms |
memory usage | 138.16M | 21.56M |
library binary size | 6.9M | <500K |
compability | armeabi-v7a-hard with neon or arm64-v8a | armeabi-v7a with neon or arm64-v8a |
thirdparty dependency | boost gflags glog lmdb openblas opencv protobuf | none |
Q ncnn的起源
A 深度学习算法要在手机上落地,caffe依赖太多,手机上也没有cuda,需要个又快又小的前向网络实现
Q ncnn名字的来历
A cnn就是卷积神经网络的缩写,开头的n算是一语n关。比如new/next(全新的实现),naive(ncnn是naive实现),neon(ncnn最初为手机优化),up主名字(←_←)
Q 支持哪些平台
A 跨平台,主要支持 android,次要支持 ios / linux / windows
Q 计算精度如何
A armv7 neon float 不遵照 ieee754 标准,有些采用快速实现(如exp sin等),速度快但确保精度足够高
Q pc 上的速度很慢
A pc都是x86架构的,基本没做什么优化,主要用来核对结果,毕竟up主精力是有限的(
Q 为何没有 logo
A up主是mc玩家,所以开始是找了萌萌的苦力怕当看板娘的,但是这样子会侵权对吧,只好空出来了...