Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Laser origins #1395

Open
wants to merge 9 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
131 changes: 63 additions & 68 deletions pcdet/datasets/augmentor/augmentor_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,109 +5,104 @@
from ...utils import box_utils


def random_flip_along_x(gt_boxes, points, return_flip=False, enable=None):
def random_flip_along(dim, return_flip=False, enable=None):
"""
Args:
gt_boxes: (N, 7 + C), [x, y, z, dx, dy, dz, heading, [vx], [vy]]
points: (M, 3 + C)
gt_boxes: (*, 7 + C), [x, y, z, dx, dy, dz, heading, [vx], [vy]]
points: (*, 3 + C)
Returns:
"""
assert dim in [0, 1] # corresponds to x-, y-axis respectively
other_dim = 1 - dim
if enable is None:
enable = np.random.choice([False, True], replace=False, p=[0.5, 0.5])

if enable:
gt_boxes[:, 1] = -gt_boxes[:, 1]
gt_boxes[:, 6] = -gt_boxes[:, 6]
points[:, 1] = -points[:, 1]

if gt_boxes.shape[1] > 7:
gt_boxes[:, 8] = -gt_boxes[:, 8]
if return_flip:
return gt_boxes, points, enable
return gt_boxes, points
def flip_pointlike(points):
points[..., other_dim] = -points[..., other_dim]
return points

def flip_boxlike(boxes):
boxes[..., other_dim] = -boxes[..., other_dim]
boxes[..., 6] = -(boxes[..., 6] + np.pi * dim)

def random_flip_along_y(gt_boxes, points, return_flip=False, enable=None):
"""
Args:
gt_boxes: (N, 7 + C), [x, y, z, dx, dy, dz, heading, [vx], [vy]]
points: (M, 3 + C)
Returns:
"""
if enable is None:
enable = np.random.choice([False, True], replace=False, p=[0.5, 0.5])
if enable:
gt_boxes[:, 0] = -gt_boxes[:, 0]
gt_boxes[:, 6] = -(gt_boxes[:, 6] + np.pi)
points[:, 0] = -points[:, 0]
if boxes.shape[-1] > 7:
boxes[..., 7 + other_dim] = -boxes[..., 7 + other_dim]

return boxes

tfs = dict(point=flip_pointlike, box=flip_boxlike)
else:
tfs = dict()

if gt_boxes.shape[1] > 7:
gt_boxes[:, 7] = -gt_boxes[:, 7]
if return_flip:
return gt_boxes, points, enable
return gt_boxes, points
return tfs, enable
return tfs


def global_rotation(gt_boxes, points, rot_range, return_rot=False, noise_rotation=None):
def global_rotation(rot_range, return_rot=False, noise_rotation=None):
"""
Args:
gt_boxes: (N, 7 + C), [x, y, z, dx, dy, dz, heading, [vx], [vy]]
gt_boxes: (*, 7 + C), [x, y, z, dx, dy, dz, heading, [vx], [vy]]
points: (M, 3 + C),
rot_range: [min, max]
Returns:
"""
if noise_rotation is None:
noise_rotation = np.random.uniform(rot_range[0], rot_range[1])
points = common_utils.rotate_points_along_z(points[np.newaxis, :, :], np.array([noise_rotation]))[0]
gt_boxes[:, 0:3] = common_utils.rotate_points_along_z(gt_boxes[np.newaxis, :, 0:3], np.array([noise_rotation]))[0]
gt_boxes[:, 6] += noise_rotation
if gt_boxes.shape[1] > 7:
gt_boxes[:, 7:9] = common_utils.rotate_points_along_z(
np.hstack((gt_boxes[:, 7:9], np.zeros((gt_boxes.shape[0], 1))))[np.newaxis, :, :],
np.array([noise_rotation])
)[0][:, 0:2]

def rotate_pointlike(points):
points = common_utils.rotate_points_along_z(points[np.newaxis, :, :], np.array([noise_rotation]))[0]
return points

def rotate_boxlike(boxes):
boxes[..., 0:3] = common_utils.rotate_points_along_z(boxes[np.newaxis, ..., 0:3], np.array([noise_rotation]))[0]
boxes[..., 6] += noise_rotation
if boxes.shape[-1] > 7:
boxes[..., 7:9] = common_utils.rotate_points_along_z(
np.concatenate((boxes[..., 7:9], np.zeros((*boxes.shape[:-1], 1))), axis=-1)[np.newaxis, ...],
np.array([noise_rotation])
)[0, ..., 0:2]
return boxes

tfs = dict(point=rotate_pointlike, box=rotate_boxlike)

if return_rot:
return gt_boxes, points, noise_rotation
return gt_boxes, points
return tfs, noise_rotation
return tfs


def global_scaling(gt_boxes, points, scale_range, return_scale=False):
def global_scaling(scale_range, return_scale=False):
"""
Args:
gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading]
gt_boxes: (*, 7), [x, y, z, dx, dy, dz, heading, [vx], [vy]]
points: (M, 3 + C),
scale_range: [min, max]
Returns:
"""
if scale_range[1] - scale_range[0] < 1e-3:
return gt_boxes, points
noise_scale = sum(scale_range) / len(scale_range)
assert noise_scale == 1.0, (noise_scale, scale_range)
noise_scale = np.random.uniform(scale_range[0], scale_range[1])
points[:, :3] *= noise_scale
gt_boxes[:, :6] *= noise_scale
if gt_boxes.shape[1] > 7:
gt_boxes[:, 7:] *= noise_scale

if return_scale:
return gt_boxes, points, noise_scale
return gt_boxes, points

def global_scaling_with_roi_boxes(gt_boxes, roi_boxes, points, scale_range, return_scale=False):
"""
Args:
gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading]
points: (M, 3 + C),
scale_range: [min, max]
Returns:
"""
if scale_range[1] - scale_range[0] < 1e-3:
return gt_boxes, points
noise_scale = np.random.uniform(scale_range[0], scale_range[1])
points[:, :3] *= noise_scale
gt_boxes[:, :6] *= noise_scale
roi_boxes[:,:, [0,1,2,3,4,5,7,8]] *= noise_scale
def scale_pointlike(points):
points[:, :3] *= noise_scale
return points

def scale_boxlike(boxes):
boxes[..., :6] *= noise_scale
if boxes.shape[-1] > 7:
boxes[..., 7:9] *= noise_scale
return boxes

if noise_scale != 1.0:
tfs = dict(point=scale_pointlike, box=scale_boxlike)
else:
tfs = {}

if return_scale:
return gt_boxes,roi_boxes, points, noise_scale
return gt_boxes, roi_boxes, points
return tfs, noise_scale
return tfs


def random_image_flip_horizontal(image, depth_map, gt_boxes, calib):
Expand Down
56 changes: 14 additions & 42 deletions pcdet/datasets/augmentor/data_augmentor.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,22 +56,15 @@ def __setstate__(self, d):
def random_world_flip(self, data_dict=None, config=None):
if data_dict is None:
return partial(self.random_world_flip, config=config)
gt_boxes, points = data_dict['gt_boxes'], data_dict['points']
for cur_axis in config['ALONG_AXIS_LIST']:
assert cur_axis in ['x', 'y']
gt_boxes, points, enable = getattr(augmentor_utils, 'random_flip_along_%s' % cur_axis)(
gt_boxes, points, return_flip=True
cur_dim = ['x', 'y'].index(cur_axis)
tfs, enable = augmentor_utils.random_flip_along(
cur_dim, return_flip=True
)
common_utils.apply_data_transform(data_dict, tfs)
data_dict['flip_%s'%cur_axis] = enable
if 'roi_boxes' in data_dict.keys():
num_frame, num_rois,dim = data_dict['roi_boxes'].shape
roi_boxes, _, _ = getattr(augmentor_utils, 'random_flip_along_%s' % cur_axis)(
data_dict['roi_boxes'].reshape(-1,dim), np.zeros([1,3]), return_flip=True, enable=enable
)
data_dict['roi_boxes'] = roi_boxes.reshape(num_frame, num_rois,dim)

data_dict['gt_boxes'] = gt_boxes
data_dict['points'] = points
return data_dict

def random_world_rotation(self, data_dict=None, config=None):
Expand All @@ -80,36 +73,18 @@ def random_world_rotation(self, data_dict=None, config=None):
rot_range = config['WORLD_ROT_ANGLE']
if not isinstance(rot_range, list):
rot_range = [-rot_range, rot_range]
gt_boxes, points, noise_rot = augmentor_utils.global_rotation(
data_dict['gt_boxes'], data_dict['points'], rot_range=rot_range, return_rot=True
tfs, noise_rot = augmentor_utils.global_rotation(
rot_range=rot_range, return_rot=True
)
if 'roi_boxes' in data_dict.keys():
num_frame, num_rois,dim = data_dict['roi_boxes'].shape
roi_boxes, _, _ = augmentor_utils.global_rotation(
data_dict['roi_boxes'].reshape(-1, dim), np.zeros([1, 3]), rot_range=rot_range, return_rot=True, noise_rotation=noise_rot)
data_dict['roi_boxes'] = roi_boxes.reshape(num_frame, num_rois,dim)

data_dict['gt_boxes'] = gt_boxes
data_dict['points'] = points
common_utils.apply_data_transform(data_dict, tfs)
data_dict['noise_rot'] = noise_rot
return data_dict

def random_world_scaling(self, data_dict=None, config=None):
if data_dict is None:
return partial(self.random_world_scaling, config=config)

if 'roi_boxes' in data_dict.keys():
gt_boxes, roi_boxes, points, noise_scale = augmentor_utils.global_scaling_with_roi_boxes(
data_dict['gt_boxes'], data_dict['roi_boxes'], data_dict['points'], config['WORLD_SCALE_RANGE'], return_scale=True
)
data_dict['roi_boxes'] = roi_boxes
else:
gt_boxes, points, noise_scale = augmentor_utils.global_scaling(
data_dict['gt_boxes'], data_dict['points'], config['WORLD_SCALE_RANGE'], return_scale=True
)

data_dict['gt_boxes'] = gt_boxes
data_dict['points'] = points
tfs, noise_scale = augmentor_utils.global_scaling(scale_range=config['WORLD_SCALE_RANGE'], return_scale=True)
common_utils.apply_data_transform(data_dict, tfs)
data_dict['noise_scale'] = noise_scale
return data_dict

Expand Down Expand Up @@ -143,15 +118,12 @@ def random_world_translation(self, data_dict=None, config=None):
np.random.normal(0, noise_translate_std[2], 1),
], dtype=np.float32).T

gt_boxes, points = data_dict['gt_boxes'], data_dict['points']
points[:, :3] += noise_translate
gt_boxes[:, :3] += noise_translate

if 'roi_boxes' in data_dict.keys():
data_dict['roi_boxes'][:, :3] += noise_translate
def translate_locationlike(locations):
locations[..., :3] += noise_translate
return locations

data_dict['gt_boxes'] = gt_boxes
data_dict['points'] = points
tfs = dict(point=translate_locationlike, box=translate_locationlike)
common_utils.apply_data_transform(data_dict, tfs)
data_dict['noise_translate'] = noise_translate
return data_dict

Expand Down
2 changes: 1 addition & 1 deletion pcdet/datasets/dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -234,7 +234,7 @@ def collate_batch(batch_list, _unused=False):
batch_size_ratio = len(val[0])
val = [i for item in val for i in item]
ret[key] = np.concatenate(val, axis=0)
elif key in ['points', 'voxel_coords']:
elif key in ['points', 'origins', 'voxel_coords']:
coors = []
if isinstance(val[0], list):
val = [i for item in val for i in item]
Expand Down
13 changes: 7 additions & 6 deletions pcdet/datasets/processor/data_processor.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,7 +82,8 @@ def mask_points_and_boxes_outside_range(self, data_dict=None, config=None):

if data_dict.get('points', None) is not None:
mask = common_utils.mask_points_by_range(data_dict['points'], self.point_cloud_range)
data_dict['points'] = data_dict['points'][mask]
tfs = dict(point=lambda x: x[mask])
common_utils.apply_data_transform(data_dict, tfs)

if data_dict.get('gt_boxes', None) is not None and config.REMOVE_OUTSIDE_BOXES and self.training:
mask = box_utils.mask_boxes_outside_range_numpy(
Expand All @@ -97,10 +98,9 @@ def shuffle_points(self, data_dict=None, config=None):
return partial(self.shuffle_points, config=config)

if config.SHUFFLE_ENABLED[self.mode]:
points = data_dict['points']
shuffle_idx = np.random.permutation(points.shape[0])
points = points[shuffle_idx]
data_dict['points'] = points
shuffle_idx = np.random.permutation(data_dict['points'].shape[0])
tfs = dict(point=lambda x: x[shuffle_idx])
common_utils.apply_data_transform(data_dict, tfs)

return data_dict

Expand Down Expand Up @@ -208,7 +208,8 @@ def sample_points(self, data_dict=None, config=None):
extra_choice = np.random.choice(choice, num_points - len(points), replace=False)
choice = np.concatenate((choice, extra_choice), axis=0)
np.random.shuffle(choice)
data_dict['points'] = points[choice]
tfs = dict(point=lambda x: x[choice])
common_utils.apply_data_transform(data_dict, tfs)
return data_dict

def calculate_grid_size(self, data_dict=None, config=None):
Expand Down
Loading