-
Notifications
You must be signed in to change notification settings - Fork 1.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Feature] Add roipoint_pool3d op from mmdet3d (#1358)
* add ops (roipoint_pool3d) in mmdet3d * refactor code * fix typo * add unit test * refactor code * refactor code * refactor code * fix typo
- Loading branch information
Showing
9 changed files
with
391 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
144 changes: 144 additions & 0 deletions
144
mmcv/ops/csrc/common/cuda/roipoint_pool3d_cuda_kernel.cuh
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,144 @@ | ||
// Copyright (c) OpenMMLab. All rights reserved | ||
#ifndef ROIPOINT_POOL3D_CUDA_KERNEL_CUH | ||
#define ROIPOINT_POOL3D_CUDA_KERNEL_CUH | ||
|
||
#ifdef MMCV_USE_PARROTS | ||
#include "parrots_cuda_helper.hpp" | ||
#else | ||
#include "pytorch_cuda_helper.hpp" | ||
#endif | ||
|
||
template <typename T> | ||
__device__ inline void lidar_to_local_coords(T shift_x, T shift_y, T rz, | ||
T &local_x, T &local_y) { | ||
T cosa = cos(-rz), sina = sin(-rz); | ||
local_x = shift_x * cosa + shift_y * (-sina); | ||
local_y = shift_x * sina + shift_y * cosa; | ||
} | ||
|
||
template <typename T> | ||
__device__ inline int check_pt_in_box3d(const T *pt, const T *box3d, T &local_x, | ||
T &local_y) { | ||
// param pt: (x, y, z) | ||
// param box3d: (cx, cy, cz, dx, dy, dz, rz) in LiDAR coordinate, cz in the | ||
// bottom center | ||
T x = pt[0], y = pt[1], z = pt[2]; | ||
T cx = box3d[0], cy = box3d[1], cz = box3d[2]; | ||
T dx = box3d[3], dy = box3d[4], dz = box3d[5], rz = box3d[6]; | ||
cz += dz / 2.0; // shift to the center since cz in box3d is the bottom center | ||
|
||
if (fabsf(z - cz) > dz / 2.0) return 0; | ||
lidar_to_local_coords(x - cx, y - cy, rz, local_x, local_y); | ||
T in_flag = (local_x > -dx / 2.0) & (local_x < dx / 2.0) & | ||
(local_y > -dy / 2.0) & (local_y < dy / 2.0); | ||
return in_flag; | ||
} | ||
|
||
template <typename T> | ||
__global__ void assign_pts_to_box3d(int batch_size, int pts_num, int boxes_num, | ||
const T *xyz, const T *boxes3d, | ||
int *pts_assign) { | ||
// params xyz: (B, N, 3) | ||
// params boxes3d: (B, M, 7) | ||
// params pts_assign: (B, N, M): idx of the corresponding box3d, -1 means | ||
// background points | ||
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x; | ||
int box_idx = blockIdx.y; | ||
int bs_idx = blockIdx.z; | ||
|
||
if (pt_idx >= pts_num || box_idx >= boxes_num || bs_idx >= batch_size) { | ||
return; | ||
} | ||
int assign_idx = bs_idx * pts_num * boxes_num + pt_idx * boxes_num + box_idx; | ||
pts_assign[assign_idx] = 0; | ||
|
||
int box_offset = bs_idx * boxes_num * 7 + box_idx * 7; | ||
int pt_offset = bs_idx * pts_num * 3 + pt_idx * 3; | ||
|
||
T local_x = 0, local_y = 0; | ||
int cur_in_flag = check_pt_in_box3d(xyz + pt_offset, boxes3d + box_offset, | ||
local_x, local_y); | ||
pts_assign[assign_idx] = cur_in_flag; | ||
} | ||
|
||
__global__ void get_pooled_idx(int batch_size, int pts_num, int boxes_num, | ||
int sampled_pts_num, const int *pts_assign, | ||
int *pts_idx, int *pooled_empty_flag) { | ||
// params xyz: (B, N, 3) | ||
// params pts_feature: (B, N, C) | ||
// params pts_assign: (B, N) | ||
// params pts_idx: (B, M, 512) | ||
// params pooled_empty_flag: (B, M) | ||
|
||
int boxes_idx = blockIdx.x * blockDim.x + threadIdx.x; | ||
if (boxes_idx >= boxes_num) { | ||
return; | ||
} | ||
|
||
int bs_idx = blockIdx.y; | ||
|
||
int cnt = 0; | ||
for (int k = 0; k < pts_num; k++) { | ||
if (pts_assign[bs_idx * pts_num * boxes_num + k * boxes_num + boxes_idx]) { | ||
if (cnt < sampled_pts_num) { | ||
pts_idx[bs_idx * boxes_num * sampled_pts_num + | ||
boxes_idx * sampled_pts_num + cnt] = k; | ||
cnt++; | ||
} else | ||
break; | ||
} | ||
} | ||
|
||
if (cnt == 0) { | ||
pooled_empty_flag[bs_idx * boxes_num + boxes_idx] = 1; | ||
} else if (cnt < sampled_pts_num) { | ||
// duplicate same points for sampling | ||
for (int k = cnt; k < sampled_pts_num; k++) { | ||
int duplicate_idx = k % cnt; | ||
int base_offset = | ||
bs_idx * boxes_num * sampled_pts_num + boxes_idx * sampled_pts_num; | ||
pts_idx[base_offset + k] = pts_idx[base_offset + duplicate_idx]; | ||
} | ||
} | ||
} | ||
|
||
template <typename T> | ||
__global__ void roipoint_pool3d_forward( | ||
int batch_size, int pts_num, int boxes_num, int feature_in_len, | ||
int sampled_pts_num, const T *xyz, const int *pts_idx, const T *pts_feature, | ||
T *pooled_features, int *pooled_empty_flag) { | ||
// params xyz: (B, N, 3) | ||
// params pts_idx: (B, M, 512) | ||
// params pts_feature: (B, N, C) | ||
// params pooled_features: (B, M, 512, 3+C) | ||
// params pooled_empty_flag: (B, M) | ||
|
||
int sample_pt_idx = blockIdx.x * blockDim.x + threadIdx.x; | ||
int box_idx = blockIdx.y; | ||
int bs_idx = blockIdx.z; | ||
|
||
if (sample_pt_idx >= sampled_pts_num || box_idx >= boxes_num || | ||
bs_idx >= batch_size) { | ||
return; | ||
} | ||
|
||
if (pooled_empty_flag[bs_idx * boxes_num + box_idx]) { | ||
return; | ||
} | ||
|
||
int temp_idx = bs_idx * boxes_num * sampled_pts_num + | ||
box_idx * sampled_pts_num + sample_pt_idx; | ||
int src_pt_idx = pts_idx[temp_idx]; | ||
int dst_feature_offset = temp_idx * (3 + feature_in_len); | ||
|
||
for (int j = 0; j < 3; j++) | ||
pooled_features[dst_feature_offset + j] = | ||
xyz[bs_idx * pts_num * 3 + src_pt_idx * 3 + j]; | ||
|
||
int src_feature_offset = | ||
bs_idx * pts_num * feature_in_len + src_pt_idx * feature_in_len; | ||
memcpy(pooled_features + dst_feature_offset + 3, | ||
pts_feature + src_feature_offset, feature_in_len * sizeof(T)); | ||
} | ||
|
||
#endif // ROIPOINT_POOL3D_CUDA_KERNEL_CUH |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
/* | ||
Modified from | ||
https://github.com/open-mmlab/OpenPCDet/blob/master/pcdet/ops/roipoint_pool3d/src/roipoint_pool3d_kernel.cu | ||
Point cloud feature pooling | ||
Written by Shaoshuai Shi | ||
All Rights Reserved 2018. | ||
*/ | ||
|
||
#include <math.h> | ||
#include <stdio.h> | ||
|
||
#include "pytorch_cuda_helper.hpp" | ||
#include "roipoint_pool3d_cuda_kernel.cuh" | ||
|
||
void RoIPointPool3dForwardCUDAKernelLauncher( | ||
int batch_size, int pts_num, int boxes_num, int feature_in_len, | ||
int sampled_pts_num, const Tensor xyz, const Tensor boxes3d, | ||
const Tensor pts_feature, Tensor pooled_features, | ||
Tensor pooled_empty_flag) { | ||
Tensor pts_assign = at::empty({batch_size, pts_num, boxes_num}, | ||
boxes3d.options().dtype(at::kInt)); | ||
|
||
at::cuda::CUDAGuard device_guard(xyz.device()); | ||
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | ||
|
||
// blockIdx.x(col), blockIdx.y(row) | ||
dim3 blocks(DIVUP(pts_num, THREADS_PER_BLOCK), boxes_num, batch_size); | ||
dim3 threads(THREADS_PER_BLOCK); | ||
|
||
AT_DISPATCH_FLOATING_TYPES_AND_HALF( | ||
xyz.scalar_type(), "assign_pts_to_box3d", [&] { | ||
assign_pts_to_box3d<scalar_t><<<blocks, threads, 0, stream>>>( | ||
batch_size, pts_num, boxes_num, xyz.data_ptr<scalar_t>(), | ||
boxes3d.data_ptr<scalar_t>(), pts_assign.data_ptr<int>()); | ||
}); | ||
|
||
Tensor pts_idx = at::empty({batch_size, boxes_num, sampled_pts_num}, | ||
boxes3d.options().dtype(at::kInt)); | ||
|
||
// blockIdx.x(col), blockIdx.y(row) | ||
dim3 blocks2(DIVUP(boxes_num, THREADS_PER_BLOCK), batch_size); | ||
|
||
get_pooled_idx<<<blocks2, threads, 0, stream>>>( | ||
batch_size, pts_num, boxes_num, sampled_pts_num, | ||
pts_assign.data_ptr<int>(), pts_idx.data_ptr<int>(), | ||
pooled_empty_flag.data_ptr<int>()); | ||
|
||
dim3 blocks_pool(DIVUP(sampled_pts_num, THREADS_PER_BLOCK), boxes_num, | ||
batch_size); | ||
|
||
AT_DISPATCH_FLOATING_TYPES_AND_HALF( | ||
xyz.scalar_type(), "roipoint_pool3d_forward", [&] { | ||
roipoint_pool3d_forward<scalar_t><<<blocks_pool, threads, 0, stream>>>( | ||
batch_size, pts_num, boxes_num, feature_in_len, sampled_pts_num, | ||
xyz.data_ptr<scalar_t>(), pts_idx.data_ptr<int>(), | ||
pts_feature.data_ptr<scalar_t>(), | ||
pooled_features.data_ptr<scalar_t>(), | ||
pooled_empty_flag.data_ptr<int>()); | ||
}); | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
/* | ||
Modified from | ||
https://github.com/open-mmlab/OpenPCDet/blob/master/pcdet/ops/roipoint_pool3d/src/roipoint_pool3d.cpp | ||
Point cloud feature pooling | ||
Written by Shaoshuai Shi | ||
All Rights Reserved 2018. | ||
*/ | ||
|
||
#include "pytorch_cpp_helper.hpp" | ||
|
||
#ifdef MMCV_WITH_CUDA | ||
void RoIPointPool3dForwardCUDAKernelLauncher( | ||
int batch_size, int pts_num, int boxes_num, int feature_in_len, | ||
int sampled_pts_num, const Tensor xyz, const Tensor boxes3d, | ||
const Tensor pts_feature, Tensor pooled_features, Tensor pooled_empty_flag); | ||
|
||
void roipoint_pool3d_forward_cuda(int batch_size, int pts_num, int boxes_num, | ||
int feature_in_len, int sampled_pts_num, | ||
const Tensor xyz, const Tensor boxes3d, | ||
const Tensor pts_feature, | ||
Tensor pooled_features, | ||
Tensor pooled_empty_flag) { | ||
RoIPointPool3dForwardCUDAKernelLauncher( | ||
batch_size, pts_num, boxes_num, feature_in_len, sampled_pts_num, xyz, | ||
boxes3d, pts_feature, pooled_features, pooled_empty_flag); | ||
}; | ||
#endif | ||
|
||
void roipoint_pool3d_forward(Tensor xyz, Tensor boxes3d, Tensor pts_feature, | ||
Tensor pooled_features, Tensor pooled_empty_flag) { | ||
// params xyz: (B, N, 3) | ||
// params boxes3d: (B, M, 7) | ||
// params pts_feature: (B, N, C) | ||
// params pooled_features: (B, M, 512, 3+C) | ||
// params pooled_empty_flag: (B, M) | ||
|
||
if (xyz.device().is_cuda()) { | ||
#ifdef MMCV_WITH_CUDA | ||
CHECK_CUDA_INPUT(xyz); | ||
CHECK_CUDA_INPUT(boxes3d); | ||
CHECK_CUDA_INPUT(pts_feature); | ||
CHECK_CUDA_INPUT(pooled_features); | ||
CHECK_CUDA_INPUT(pooled_empty_flag); | ||
|
||
int batch_size = xyz.size(0); | ||
int pts_num = xyz.size(1); | ||
int boxes_num = boxes3d.size(1); | ||
int feature_in_len = pts_feature.size(2); | ||
int sampled_pts_num = pooled_features.size(2); | ||
|
||
roipoint_pool3d_forward_cuda(batch_size, pts_num, boxes_num, feature_in_len, | ||
sampled_pts_num, xyz, boxes3d, pts_feature, | ||
pooled_features, pooled_empty_flag); | ||
#else | ||
AT_ERROR("roipoint_pool3d is not compiled with GPU support"); | ||
#endif | ||
} else { | ||
AT_ERROR("roipoint_pool3d is not implemented on CPU"); | ||
} | ||
} |
Oops, something went wrong.