Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] Support iSAID aerial dataset. #1115

Merged
merged 32 commits into from
Feb 17, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
32 commits
Select commit Hold shift + click to select a range
0a89062
support iSAID aerial dataset
Waterman0524 Dec 8, 2021
762f247
Update and rename docs/dataset_prepare.md to 博士/dataset_prepare.md
Waterman0524 Dec 8, 2021
71d0687
Update dataset_prepare.md
Waterman0524 Dec 8, 2021
aaabcec
Merge branch 'mmsegmentation-2' of github.com:Waterman0524/mmsegmenta…
MengzhangLI Dec 8, 2021
5fc2571
fix typo
MengzhangLI Dec 8, 2021
ea263b4
fix typo
MengzhangLI Dec 8, 2021
5e9a39b
fix typo
MengzhangLI Dec 8, 2021
75b4092
Merge branch 'master' of https://github.com/open-mmlab/mmsegmentation…
MengzhangLI Jan 5, 2022
c0fdead
remove imgviz
MengzhangLI Jan 10, 2022
c045dcd
fix wrong order in annotation name
MengzhangLI Jan 10, 2022
357a1fe
add unit test
MengzhangLI Jan 17, 2022
34d9883
upload numerical results
MengzhangLI Jan 25, 2022
3568f3b
Merge branch 'master' of https://github.com/open-mmlab/mmsegmentation…
MengzhangLI Feb 7, 2022
43fa207
upload models&logs
MengzhangLI Feb 7, 2022
b39a4fb
upload models&logs
MengzhangLI Feb 7, 2022
1e14918
add load_annotations
MengzhangLI Feb 7, 2022
6205cb8
fix unittest coverage
MengzhangLI Feb 7, 2022
8bc4fe1
fix unittest coverage
MengzhangLI Feb 7, 2022
5f44484
fix correct crop size in config
MengzhangLI Feb 9, 2022
0578987
fix iSAID unit test
MengzhangLI Feb 9, 2022
8559373
fix iSAID unit test
MengzhangLI Feb 9, 2022
3d6c93c
fix typos
MengzhangLI Feb 10, 2022
a752690
fix wrong crop size in readme
MengzhangLI Feb 13, 2022
f7d82ec
use smaller figure as test data
MengzhangLI Feb 13, 2022
e699f7a
add smaller dataset in test data
MengzhangLI Feb 13, 2022
6818a12
add blank in docs
MengzhangLI Feb 14, 2022
845d99a
use 0 bytes pseudo data
MengzhangLI Feb 14, 2022
92fa898
add footnote and comments for crop size
MengzhangLI Feb 15, 2022
d68a517
change iSAID to isaid and add default value in it
MengzhangLI Feb 16, 2022
5018a41
change iSAID to isaid in _base_
MengzhangLI Feb 16, 2022
754c8bf
Merge branch 'master' of https://github.com/open-mmlab/mmsegmentation…
MengzhangLI Feb 16, 2022
9c9b176
Merge branch 'master' of https://github.com/open-mmlab/mmsegmentation…
MengzhangLI Feb 16, 2022
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -138,6 +138,7 @@ Supported datasets:
- [x] [LoveDA](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#loveda)
- [x] [Potsdam](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#isprs-potsdam)
- [x] [Vaihingen](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#isprs-vaihingen)
- [x] [iSAID](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#isaid)

## Installation

Expand Down
1 change: 1 addition & 0 deletions README_zh-CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -137,6 +137,7 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O
- [x] [LoveDA](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#loveda)
- [x] [Potsdam](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#isprs-potsdam)
- [x] [Vaihingen](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#isprs-vaihingen)
- [x] [iSAID](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#isaid)

## 安装

Expand Down
62 changes: 62 additions & 0 deletions configs/_base_/datasets/isaid.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
# dataset settings
dataset_type = 'iSAIDDataset'
data_root = 'data/iSAID'

img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
"""
This crop_size setting is followed by the implementation of
`PointFlow: Flowing Semantics Through Points for Aerial Image
Segmentation <https://arxiv.org/pdf/2103.06564.pdf>`_.
"""

crop_size = (896, 896)

train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(type='Resize', img_scale=(896, 896), ratio_range=(0.5, 2.0)),
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(896, 896),
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=4,
workers_per_gpu=4,
train=dict(
type=dataset_type,
data_root=data_root,
img_dir='img_dir/train',
ann_dir='ann_dir/train',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_root=data_root,
img_dir='img_dir/val',
ann_dir='ann_dir/val',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
data_root=data_root,
img_dir='img_dir/val',
ann_dir='ann_dir/val',
pipeline=test_pipeline))
8 changes: 8 additions & 0 deletions configs/deeplabv3plus/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -114,8 +114,16 @@ Spatial pyramid pooling module or encode-decoder structure are used in deep neur
| DeepLabV3+ | R-50-D8 | 512x512 | 80000 | 7.36 | 26.91 | 73.97 | 75.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3plus/deeplabv3plus_r50-d8_4x4_512x512_80k_vaihingen.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r50-d8_4x4_512x512_80k_vaihingen_20211231_230816-5040938d.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r50-d8_4x4_512x512_80k_vaihingen_20211231_230816.log.json) |
| DeepLabV3+ | R-101-D8 | 512x512 | 80000 | 10.83 | 18.59 | 73.06 | 74.14 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3plus/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen_20211231_230816-8a095afa.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen_20211231_230816.log.json) |

### iSAID

| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
| ---------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| DeepLabV3+ | R-18-D8 | 896x896 | 80000 | 6.19 | 24.81 | 61.35 | 62.61 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3plus/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid_20220110_180526-7059991d.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid_20220110_180526.log.json) |
MengzhangLI marked this conversation as resolved.
Show resolved Hide resolved
| DeepLabV3+ | R-50-D8 | 896x896 | 80000 | 21.45 | 8.42 | 67.06 | 68.02 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3plus/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid_20220110_180526-598be439.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid_20220110_180526.log.json) |

Note:

- `D-8`/`D-16` here corresponding to the output stride 8/16 setting for DeepLab series.
- `MG-124` stands for multi-grid dilation in the last stage of ResNet.
- `FP16` means Mixed Precision (FP16) is adopted in training.
- `896x896` is the Crop Size of iSAID dataset, which is followed by the implementation of [PointFlow: Flowing Semantics Through Points for Aerial Image Segmentation](https://arxiv.org/pdf/2103.06564.pdf)
45 changes: 45 additions & 0 deletions configs/deeplabv3plus/deeplabv3plus.yml
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ Collections:
- LoveDA
- Potsdam
- Vaihingen
- iSAID
Paper:
URL: https://arxiv.org/abs/1802.02611
Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
Expand Down Expand Up @@ -803,3 +804,47 @@ Models:
mIoU(ms+flip): 74.14
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen_20211231_230816-8a095afa.pth
- Name: deeplabv3plus_r18-d8_4x4_896x896_80k_isaid
In Collection: deeplabv3plus
Metadata:
backbone: R-18-D8
crop size: (896,896)
lr schd: 80000
inference time (ms/im):
- value: 40.31
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (896,896)
Training Memory (GB): 6.19
Results:
- Task: Semantic Segmentation
Dataset: iSAID
Metrics:
mIoU: 61.35
mIoU(ms+flip): 62.61
Config: configs/deeplabv3plus/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid_20220110_180526-7059991d.pth
- Name: deeplabv3plus_r50-d8_4x4_896x896_80k_isaid
In Collection: deeplabv3plus
Metadata:
backbone: R-50-D8
crop size: (896,896)
lr schd: 80000
inference time (ms/im):
- value: 118.76
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (896,896)
Training Memory (GB): 21.45
Results:
- Task: Semantic Segmentation
Dataset: iSAID
Metrics:
mIoU: 67.06
mIoU(ms+flip): 68.02
Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid_20220110_180526-598be439.pth
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
_base_ = './deeplabv3plus_r50-d8_4x4_896x896_80k_isaid.py'
model = dict(
pretrained='open-mmlab://resnet18_v1c',
backbone=dict(depth=18),
decode_head=dict(
c1_in_channels=64,
c1_channels=12,
in_channels=512,
channels=128,
),
auxiliary_head=dict(in_channels=256, channels=64))
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
_base_ = [
'../_base_/models/deeplabv3plus_r50-d8.py', '../_base_/datasets/isaid.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
]
model = dict(
decode_head=dict(num_classes=16), auxiliary_head=dict(num_classes=16))
12 changes: 12 additions & 0 deletions configs/hrnet/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -107,3 +107,15 @@ High-resolution representations are essential for position-sensitive vision prob
| FCN | HRNetV2p-W18-Small | 512x512 | 80000 | 1.58 | 38.11 | 71.81 | 73.1 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr18s_4x4_512x512_80k_vaihingen.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_512x512_80k_vaihingen/fcn_hr18s_4x4_512x512_80k_vaihingen_20211231_230909-b23aae02.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_512x512_80k_vaihingen/fcn_hr18s_4x4_512x512_80k_vaihingen_20211231_230909.log.json) |
| FCN | HRNetV2p-W18 | 512x512 | 80000 | 2.76 | 19.55 | 72.57 | 74.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr18_4x4_512x512_80k_vaihingen.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_512x512_80k_vaihingen/fcn_hr18_4x4_512x512_80k_vaihingen_20211231_231216-2ec3ae8a.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_512x512_80k_vaihingen/fcn_hr18_4x4_512x512_80k_vaihingen_20211231_231216.log.json) |
| FCN | HRNetV2p-W48 | 512x512 | 80000 | 6.20 | 17.25 | 72.50 | 73.52 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr48_4x4_512x512_80k_vaihingen.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_512x512_80k_vaihingen/fcn_hr48_4x4_512x512_80k_vaihingen_20211231_231244-7133cb22.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_512x512_80k_vaihingen/fcn_hr48_4x4_512x512_80k_vaihingen_20211231_231244.log.json) |

### iSAID

| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
| ---------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| FCN | HRNetV2p-W18-Small | 896x896 | 80000 | 4.95 | 13.84 | 62.30 | 62.97 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr18s_4x4_896x896_80k_isaid.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_896x896_80k_isaid/fcn_hr18s_4x4_896x896_80k_isaid_20220118_001603-3cc0769b.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_896x896_80k_isaid/fcn_hr18s_4x4_896x896_80k_isaid_20220118_001603.log.json) |
| FCN | HRNetV2p-W18 | 896x896 | 80000 | 8.30 | 7.71 | 65.06 | 65.60 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr18_4x4_896x896_80k_isaid.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_896x896_80k_isaid/fcn_hr18_4x4_896x896_80k_isaid_20220110_182230-49bf752e.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_896x896_80k_isaid/fcn_hr18_4x4_896x896_80k_isaid_20220110_182230.log.json) |
| FCN | HRNetV2p-W48 | 896x896 | 80000 | 16.89 | 7.34 | 67.80 | 68.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr48_4x4_896x896_80k_isaid.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_896x896_80k_isaid/fcn_hr48_4x4_896x896_80k_isaid_20220114_174643-547fc420.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_896x896_80k_isaid/fcn_hr48_4x4_896x896_80k_isaid_20220114_174643.log.json) |

Note:

- `896x896` is the Crop Size of iSAID dataset, which is followed by the implementation of [PointFlow: Flowing Semantics Through Points for Aerial Image Segmentation](https://arxiv.org/pdf/2103.06564.pdf)
5 changes: 5 additions & 0 deletions configs/hrnet/fcn_hr18_4x4_896x896_80k_isaid.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
_base_ = [
'../_base_/models/fcn_hr18.py', '../_base_/datasets/isaid.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
]
model = dict(decode_head=dict(num_classes=16))
9 changes: 9 additions & 0 deletions configs/hrnet/fcn_hr18s_4x4_896x896_80k_isaid.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
_base_ = './fcn_hr18_4x4_896x896_80k_isaid.py'
model = dict(
pretrained='open-mmlab://msra/hrnetv2_w18_small',
backbone=dict(
extra=dict(
stage1=dict(num_blocks=(2, )),
stage2=dict(num_blocks=(2, 2)),
stage3=dict(num_modules=3, num_blocks=(2, 2, 2)),
stage4=dict(num_modules=2, num_blocks=(2, 2, 2, 2)))))
10 changes: 10 additions & 0 deletions configs/hrnet/fcn_hr48_4x4_896x896_80k_isaid.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
_base_ = './fcn_hr18_4x4_896x896_80k_isaid.py'
model = dict(
pretrained='open-mmlab://msra/hrnetv2_w48',
backbone=dict(
extra=dict(
stage2=dict(num_channels=(48, 96)),
stage3=dict(num_channels=(48, 96, 192)),
stage4=dict(num_channels=(48, 96, 192, 384)))),
decode_head=dict(
in_channels=[48, 96, 192, 384], channels=sum([48, 96, 192, 384])))
67 changes: 67 additions & 0 deletions configs/hrnet/hrnet.yml
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ Collections:
- LoveDA
- Potsdam
- Vaihingen
- iSAID
Paper:
URL: https://arxiv.org/abs/1908.07919
Title: Deep High-Resolution Representation Learning for Human Pose Estimation
Expand Down Expand Up @@ -648,3 +649,69 @@ Models:
mIoU(ms+flip): 73.52
Config: configs/hrnet/fcn_hr48_4x4_512x512_80k_vaihingen.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_512x512_80k_vaihingen/fcn_hr48_4x4_512x512_80k_vaihingen_20211231_231244-7133cb22.pth
- Name: fcn_hr18s_4x4_896x896_80k_isaid
In Collection: hrnet
Metadata:
backbone: HRNetV2p-W18-Small
crop size: (896,896)
lr schd: 80000
inference time (ms/im):
- value: 72.25
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (896,896)
Training Memory (GB): 4.95
Results:
- Task: Semantic Segmentation
Dataset: iSAID
Metrics:
mIoU: 62.3
mIoU(ms+flip): 62.97
Config: configs/hrnet/fcn_hr18s_4x4_896x896_80k_isaid.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_896x896_80k_isaid/fcn_hr18s_4x4_896x896_80k_isaid_20220118_001603-3cc0769b.pth
- Name: fcn_hr18_4x4_896x896_80k_isaid
In Collection: hrnet
Metadata:
backbone: HRNetV2p-W18
crop size: (896,896)
lr schd: 80000
inference time (ms/im):
- value: 129.7
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (896,896)
Training Memory (GB): 8.3
Results:
- Task: Semantic Segmentation
Dataset: iSAID
Metrics:
mIoU: 65.06
mIoU(ms+flip): 65.6
Config: configs/hrnet/fcn_hr18_4x4_896x896_80k_isaid.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_896x896_80k_isaid/fcn_hr18_4x4_896x896_80k_isaid_20220110_182230-49bf752e.pth
- Name: fcn_hr48_4x4_896x896_80k_isaid
In Collection: hrnet
Metadata:
backbone: HRNetV2p-W48
crop size: (896,896)
lr schd: 80000
inference time (ms/im):
- value: 136.24
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (896,896)
Training Memory (GB): 16.89
Results:
- Task: Semantic Segmentation
Dataset: iSAID
Metrics:
mIoU: 67.8
mIoU(ms+flip): 68.53
Config: configs/hrnet/fcn_hr48_4x4_896x896_80k_isaid.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_896x896_80k_isaid/fcn_hr48_4x4_896x896_80k_isaid_20220114_174643-547fc420.pth
Loading