Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] Support ICNet #884

Merged
merged 25 commits into from
Sep 30, 2021
Merged
Show file tree
Hide file tree
Changes from 9 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -77,6 +77,7 @@ Supported methods:
- [x] [PSANet (ECCV'2018)](configs/psanet)
- [x] [DeepLabV3+ (CVPR'2018)](configs/deeplabv3plus)
- [x] [UPerNet (ECCV'2018)](configs/upernet)
- [x] [ICNet (ECCV'2018)](configs/icnet)
- [x] [NonLocal Net (CVPR'2018)](configs/nonlocal_net)
- [x] [EncNet (CVPR'2018)](configs/encnet)
- [x] [Semantic FPN (CVPR'2019)](configs/sem_fpn)
Expand Down
1 change: 1 addition & 0 deletions README_zh-CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -76,6 +76,7 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O
- [x] [PSANet (ECCV'2018)](configs/psanet)
- [x] [DeepLabV3+ (CVPR'2018)](configs/deeplabv3plus)
- [x] [UPerNet (ECCV'2018)](configs/upernet)
- [x] [ICNet (ECCV'2018)](configs/icnet)
- [x] [NonLocal Net (CVPR'2018)](configs/nonlocal_net)
- [x] [EncNet (CVPR'2018)](configs/encnet)
- [x] [Semantic FPN (CVPR'2019)](configs/sem_fpn)
Expand Down
35 changes: 35 additions & 0 deletions configs/_base_/datasets/cityscapes_832x832.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
_base_ = './cityscapes.py'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
crop_size = (832, 832)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(2048, 1024),
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
41 changes: 41 additions & 0 deletions configs/_base_/models/icnet_r50-d8.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
# model settings
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
type='EncoderDecoder',
backbone=dict(
type='ICNet',
in_channels=3,
layer_channels=(512, 2048),
light_branch_middle_channels=32,
psp_out_channels=512,
out_channels=(64, 256, 256),
backbone_cfg=dict(
type='ResNetV1c',
in_channels=3,
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
dilations=(1, 1, 2, 4),
strides=(1, 2, 1, 1),
norm_cfg=norm_cfg,
norm_eval=False,
style='pytorch',
contract_dilation=True),
norm_cfg=norm_cfg,
align_corners=False,
),
decode_head=dict(
type='ICHead',
in_channels=(64, 256, 256),
in_index=(0, 1, 2),
input_transform='multiple_select',
channels=128,
dropout_ratio=0,
norm_cfg=norm_cfg,
align_corners=False,
num_classes=19,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
# model training and testing settings
train_cfg=dict(),
test_cfg=dict(mode='whole'))
36 changes: 36 additions & 0 deletions configs/icnet/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
# Icnet for real-time semantic segmentation on high-resolution images

## Introduction

<!-- [ALGORITHM] -->

```latex
@inproceedings{zhao2018icnet,
title={Icnet for real-time semantic segmentation on high-resolution images},
author={Zhao, Hengshuang and Qi, Xiaojuan and Shen, Xiaoyong and Shi, Jianping and Jia, Jiaya},
booktitle={Proceedings of the European conference on computer vision (ECCV)},
pages={405--420},
year={2018}
}
```

## Results and models

### Cityscapes

| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
| ------ | ---------- | --------- | ------: | -------- | -------------- | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| ICNet | R-18-D8 | 832x832 | 80000 | 1.87 | 32.11 | 66.92 | 69.43 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/icnet/icnet_r18-d8_832x832_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_40k_cityscapes/fcn_r50-d8_512x1024_40k_cityscapes_20200604_192608-efe53f0d.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_40k_cityscapes/fcn_r50-d8_512x1024_40k_cityscapes_20200604_192608.log.json) |
| ICNet | R-18-D8 | 832x832 | 160000 | - | - | 71.77 | 74.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/icnet/icnet_r18-d8_832x832_160k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_40k_cityscapes/fcn_r101-d8_512x1024_40k_cityscapes_20200604_181852-a883d3a1.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_40k_cityscapes/fcn_r101-d8_512x1024_40k_cityscapes_20200604_181852.log.json) |
| ICNet (in1k-pre) | R-18-D8 | 832x832 | 80000 | - | - | 73.16 | 75.31 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/icnet/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_40k_cityscapes/fcn_r50-d8_769x769_40k_cityscapes_20200606_113104-977b5d02.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_40k_cityscapes/fcn_r50-d8_769x769_40k_cityscapes_20200606_113104.log.json) |
| ICNet (in1k-pre) | R-18-D8 | 832x832 | 160000 | - | - | 71.28 | 73.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/icnet/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_40k_cityscapes/fcn_r101-d8_769x769_40k_cityscapes_20200606_113208-7d4ab69c.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_40k_cityscapes/fcn_r101-d8_769x769_40k_cityscapes_20200606_113208.log.json) |
| ICNet | R-50-D8 | 832x832 | 80000 | 2.41 | 19.46 | 69.66 | 71.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/icnet/icnet_r50-d8_832x832_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_512x1024_80k_cityscapes/fcn_r18-d8_512x1024_80k_cityscapes_20201225_021327-6c50f8b4.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_512x1024_80k_cityscapes/fcn_r18-d8_512x1024_80k_cityscapes-20201225_021327.log.json) |
| ICNet | R-50-D8 | 832x832 | 160000 | - | - | 72.38 | 74.37 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/icnet/icnet_r50-d8_832x832_160k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_80k_cityscapes/fcn_r50-d8_512x1024_80k_cityscapes_20200606_113019-03aa804d.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_80k_cityscapes/fcn_r50-d8_512x1024_80k_cityscapes_20200606_113019.log.json) |
| ICNet (in1k-pre) | R-50-D8 | 832x832 | 80000 | - | - | 74.1 | 76.52 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/icnet/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_80k_cityscapes/fcn_r101-d8_512x1024_80k_cityscapes_20200606_113038-3fb937eb.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_80k_cityscapes/fcn_r101-d8_512x1024_80k_cityscapes_20200606_113038.log.json) |
| ICNet (in1k-pre) | R-50-D8 | 832x832 | 160000 | - | - | 70.08 | 77.49 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/icnet/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_769x769_80k_cityscapes/fcn_r18-d8_769x769_80k_cityscapes_20201225_021451-9739d1b8.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_769x769_80k_cityscapes/fcn_r18-d8_769x769_80k_cityscapes-20201225_021451.log.json) |
| ICNet | R-101-D8 | 832x832 | 80000 | 3.26 | 15.11 | 70.34 | 72.39 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/icnet/icnet_r101-d8_832x832_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_512x1024_80k_cityscapes/fcn_r18-d8_512x1024_80k_cityscapes_20201225_021327-6c50f8b4.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_512x1024_80k_cityscapes/fcn_r18-d8_512x1024_80k_cityscapes-20201225_021327.log.json) |
| ICNet | R-101-D8 | 832x832 | 160000 | - | - | 73.19 | 75.72 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/icnet/icnet_r101-d8_832x832_160k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_80k_cityscapes/fcn_r50-d8_512x1024_80k_cityscapes_20200606_113019-03aa804d.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_80k_cityscapes/fcn_r50-d8_512x1024_80k_cityscapes_20200606_113019.log.json) |
| ICNet (in1k-pre) | R-101-D8 | 832x832 | 80000 | - | - | 75.19 | 77.82 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/icnet/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_80k_cityscapes/fcn_r101-d8_512x1024_80k_cityscapes_20200606_113038-3fb937eb.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_80k_cityscapes/fcn_r101-d8_512x1024_80k_cityscapes_20200606_113038.log.json) |
| ICNet (in1k-pre) | R-101-D8 | 832x832 | 160000 | - | - | 75.16 | 77.32 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/icnet/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_769x769_80k_cityscapes/fcn_r18-d8_769x769_80k_cityscapes_20201225_021451-9739d1b8.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_769x769_80k_cityscapes/fcn_r18-d8_769x769_80k_cityscapes-20201225_021451.log.json) |

Note: `in1k-pre` means pretrained model is used.
198 changes: 198 additions & 0 deletions configs/icnet/icnet.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,198 @@
Collections:
- Metadata:
Training Data:
- Cityscapes
Name: icnet
Models:
- Config: configs/icnet/icnet_r18-d8_832x832_80k_cityscapes.py
In Collection: icnet
Metadata:
backbone: R-18-D8
crop size: (832,832)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (832,832)
value: 31.14
lr schd: 80000
memory (GB): 1.87
Name: icnet_r18-d8_832x832_80k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 66.92
mIoU(ms+flip): 69.43
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_40k_cityscapes/fcn_r50-d8_512x1024_40k_cityscapes_20200604_192608-efe53f0d.pth
- Config: configs/icnet/icnet_r18-d8_832x832_160k_cityscapes.py
In Collection: icnet
Metadata:
backbone: R-18-D8
crop size: (832,832)
lr schd: 160000
Name: icnet_r18-d8_832x832_160k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 71.77
mIoU(ms+flip): 74.71
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_40k_cityscapes/fcn_r101-d8_512x1024_40k_cityscapes_20200604_181852-a883d3a1.pth
- Config: configs/icnet/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes.py
In Collection: icnet
Metadata:
backbone: R-18-D8
crop size: (832,832)
lr schd: 80000
Name: icnet_r18-d8_in1k-pre_832x832_80k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 73.16
mIoU(ms+flip): 75.31
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_40k_cityscapes/fcn_r50-d8_769x769_40k_cityscapes_20200606_113104-977b5d02.pth
- Config: configs/icnet/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes.py
In Collection: icnet
Metadata:
backbone: R-18-D8
crop size: (832,832)
lr schd: 160000
Name: icnet_r18-d8_in1k-pre_832x832_160k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 71.28
mIoU(ms+flip): 73.58
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_40k_cityscapes/fcn_r101-d8_769x769_40k_cityscapes_20200606_113208-7d4ab69c.pth
- Config: configs/icnet/icnet_r50-d8_832x832_80k_cityscapes.py
In Collection: icnet
Metadata:
backbone: R-50-D8
crop size: (832,832)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (832,832)
value: 51.39
lr schd: 80000
memory (GB): 2.41
Name: icnet_r50-d8_832x832_80k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 69.66
mIoU(ms+flip): 71.69
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_512x1024_80k_cityscapes/fcn_r18-d8_512x1024_80k_cityscapes_20201225_021327-6c50f8b4.pth
- Config: configs/icnet/icnet_r50-d8_832x832_160k_cityscapes.py
In Collection: icnet
Metadata:
backbone: R-50-D8
crop size: (832,832)
lr schd: 160000
Name: icnet_r50-d8_832x832_160k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 72.38
mIoU(ms+flip): 74.37
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_80k_cityscapes/fcn_r50-d8_512x1024_80k_cityscapes_20200606_113019-03aa804d.pth
- Config: configs/icnet/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes.py
In Collection: icnet
Metadata:
backbone: R-50-D8
crop size: (832,832)
lr schd: 80000
Name: icnet_r50-d8_in1k-pre_832x832_80k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 74.1
mIoU(ms+flip): 76.52
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_80k_cityscapes/fcn_r101-d8_512x1024_80k_cityscapes_20200606_113038-3fb937eb.pth
- Config: configs/icnet/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes.py
In Collection: icnet
Metadata:
backbone: R-50-D8
crop size: (832,832)
lr schd: 160000
Name: icnet_r50-d8_in1k-pre_832x832_160k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 70.08
mIoU(ms+flip): 77.49
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_769x769_80k_cityscapes/fcn_r18-d8_769x769_80k_cityscapes_20201225_021451-9739d1b8.pth
- Config: configs/icnet/icnet_r101-d8_832x832_80k_cityscapes.py
In Collection: icnet
Metadata:
backbone: R-101-D8
crop size: (832,832)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (832,832)
value: 66.18
lr schd: 80000
memory (GB): 3.26
Name: icnet_r101-d8_832x832_80k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 70.34
mIoU(ms+flip): 72.39
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_512x1024_80k_cityscapes/fcn_r18-d8_512x1024_80k_cityscapes_20201225_021327-6c50f8b4.pth
- Config: configs/icnet/icnet_r101-d8_832x832_160k_cityscapes.py
In Collection: icnet
Metadata:
backbone: R-101-D8
crop size: (832,832)
lr schd: 160000
Name: icnet_r101-d8_832x832_160k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 73.19
mIoU(ms+flip): 75.72
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_80k_cityscapes/fcn_r50-d8_512x1024_80k_cityscapes_20200606_113019-03aa804d.pth
- Config: configs/icnet/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes.py
In Collection: icnet
Metadata:
backbone: R-101-D8
crop size: (832,832)
lr schd: 80000
Name: icnet_r101-d8_in1k-pre_832x832_80k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 75.19
mIoU(ms+flip): 77.82
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_80k_cityscapes/fcn_r101-d8_512x1024_80k_cityscapes_20200606_113038-3fb937eb.pth
- Config: configs/icnet/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes.py
In Collection: icnet
Metadata:
backbone: R-101-D8
crop size: (832,832)
lr schd: 160000
Name: icnet_r101-d8_in1k-pre_832x832_160k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 75.16
mIoU(ms+flip): 77.32
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_769x769_80k_cityscapes/fcn_r18-d8_769x769_80k_cityscapes_20201225_021451-9739d1b8.pth
7 changes: 7 additions & 0 deletions configs/icnet/icnet_r101-d8_832x832_160k_cityscapes.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
_base_ = [
'../_base_/models/icnet_r50-d8.py',
'../_base_/datasets/cityscapes_832x832.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_160k.py'
]

model = dict(backbone=dict(backbone_cfg=dict(depth=101)))
7 changes: 7 additions & 0 deletions configs/icnet/icnet_r101-d8_832x832_80k_cityscapes.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
_base_ = [
'../_base_/models/icnet_r50-d8.py',
'../_base_/datasets/cityscapes_832x832.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_80k.py'
]

model = dict(backbone=dict(backbone_cfg=dict(depth=101)))
12 changes: 12 additions & 0 deletions configs/icnet/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
_base_ = [
'../_base_/models/icnet_r50-d8.py',
'../_base_/datasets/cityscapes_832x832.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_160k.py'
]

model = dict(
backbone=dict(
backbone_cfg=dict(
depth=101,
init_cfg=dict(
type='Pretrained', checkpoint='open-mmlab://resnet101_v1c'))))
12 changes: 12 additions & 0 deletions configs/icnet/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
_base_ = [
'../_base_/models/icnet_r50-d8.py',
'../_base_/datasets/cityscapes_832x832.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_80k.py'
]

model = dict(
backbone=dict(
backbone_cfg=dict(
depth=101,
init_cfg=dict(
type='Pretrained', checkpoint='open-mmlab://resnet101_v1c'))))
Loading